Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M N E
a) Ta có : AB // CD ( do ABCD là hình bình hành )
\(\Rightarrow\)AM // NC \(\left(1\right)\)
Lại có : M là trung điểm của AB \(\Rightarrow AM=\frac{1}{2}AB\left(2\right)\)
N là trung điểm của DC \(\Rightarrow CN=\frac{1}{2}CD\left(3\right)\)
mà AB = CD ( ABCD là hình bình hành ) \(\left(4\right)\)
Từ \(\left(2\right);\left(3\right);\left(4\right)\Rightarrow AM=CN\left(5\right)\)
Từ \(\left(1\right);\left(5\right)\Rightarrow\)tứ giác AMCN là hình bình hành
b) Ta có : ABCD là hình bình hành (gt)
\(\Rightarrow\)AC cắt BD tại trung điểm của mỗi đường
\(\Rightarrow\)O là trung điểm của BD và O là trung điểm của AC (*)
Ta có : AMCN là hình bình hành (cma)
\(\Rightarrow\)AC cắt MN tại trung điểm của mỗi đường
\(\Rightarrow\)O là trụng điểm của MN (**)
Từ (*) ; (**) \(\Rightarrow\)AC ; BD ; MN đồng quy
c) Ta có : AM = CN (cmt)
mà \(CN=\frac{1}{2}DC\)(cmt)
\(\Rightarrow AM=\frac{1}{2}DC\)
\(\Rightarrow\)AM là đường trung bình của \(\Delta ECD\)
a: BE=AB/2
DF=DC/2
mà AB=DC
nên BE=DF
Xét tứ giác BEDF có
BE//DF
BE=DF
=>BEDF là hình bình hành
=>DE=BF
b: BEDF là hbh
=>BD cắt EF tại trung điểm của mỗi đường(1)
ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AC,BD,EF đồng quy
(Tự vẽ hình nhen)
a,Ta có ABCD là hbh => gADC=gABC(1)
BM là phân giác gABC(gt)=>gABM=1/2gABC(2)
DN là phân giác gADC(gt)=>gMDN=1/2gADC(3)
Từ(1),(2) và (3)=> gNDM=gNBM
Mặt khác NB//DM(t/c hbh)=> BMDN là hbh
b,Gọi O là giao điểm của AC và BD(4)
=>O là trung điểm của BD(t/c hbh)
Ta lại có BMDN là hbh(câu a)=>O cũng là trung điểm của MN(5)
Từ (4) và (5)=>AC,BD,MN đồng quy tại O
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
P là trung điểm của CD
N là trung điểm của BC
Do đó: PN là đường trung bình của ΔABD
Suy ra: PN//BD và \(PN=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//PN và MQ=PN
hay MNPQ là hình bình hành
a,Vi ABCD la hbh(gt)
=>AB=CD;AB//CD
Ma M€AB;N€CD
=>MB//ND
Vi M la trung diem cua AB
=>MA=MB=AB/2
Vi N la trung diem cua CD
=>CN=ND=CD/2
Ma AB=CD(cmt)
=>MB=DN
Tg DMBN co:
MB//DN(cmt)
MB=ND(cmt)
=>Tg DMBN la hbh(dh)