K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BE=AB/2

DF=DC/2

mà AB=DC

nên BE=DF

Xét tứ giác BEDF có

BE//DF

BE=DF

=>BEDF là hình bình hành

=>DE=BF

b: BEDF là hbh

=>BD cắt EF tại trung điểm của mỗi đường(1)

ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AC,BD,EF đồng quy

 

13 tháng 12 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của AC và EF

Tứ giác AECF là hình bình hành ⇒ OE = OF

Tứ giác EMFN là hình bình hành nên hai đường chéo cắt nhau tại trung điểm của mỗi đường.

Suy ra: MN đi qua trung điểm O của EF.

Vậy AC, EF, MN đồng quy tại O.

7 tháng 10 2016

a, Ta có: ABCD la hình bình hành

=> AB=CD; AB//CD

Mà E là trung điểm của AB; F là trung điểm của CD.

=>AE= EB= CF= DF (1)

VÌ AB// CD=>EB// DF (2)

Từ(1) và (2) => EBFD là hình bình hành (theo dấu hiệu nhận biết hình bình hành)(đpcm)

b, Xét hbh ABCD ta có:

AC cắt BD tại trung điểm của AC và BD (1)

Xét hình bình hành EBFD có EF cắt BD tại trung điểm của EF và BD (2)

Từ (1) và (2) =>  Ba đường thẳng AC, BD, EF đồng quy

23 tháng 9 2017

cm ơn

30 tháng 6 2019

Vì EB= \(\frac{AB}{2}\)

DF= \(\frac{DC}{2}\)

Mà AB=CD (hình bình hành)

=> EB= DF

Tứi giác EBFD có

EB // DF; EB=DF nên là hbh

Do đó: ED// BF

Xét \(\Delta CDM\) có: DF=CF ; FN// DM nên NC= NM (1)

Xét \(\Delta ABN\)   có: AE=BE ; EM// BN nên MN= AM(2)

Từ (1) và (2) suy ra AM=MN=NC

Chúc bạn học tốt