K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2020

                                      A B C D M N E

a) Ta có : AB // CD ( do ABCD là hình bình hành )

\(\Rightarrow\)AM // NC \(\left(1\right)\)

Lại có : M là trung điểm của AB \(\Rightarrow AM=\frac{1}{2}AB\left(2\right)\)

              N là trung điểm của DC \(\Rightarrow CN=\frac{1}{2}CD\left(3\right)\)

mà AB = CD ( ABCD là hình bình hành ) \(\left(4\right)\)

Từ \(\left(2\right);\left(3\right);\left(4\right)\Rightarrow AM=CN\left(5\right)\)

Từ \(\left(1\right);\left(5\right)\Rightarrow\)tứ giác AMCN là hình bình hành

b) Ta có : ABCD là hình bình hành (gt)

\(\Rightarrow\)AC cắt BD tại trung điểm của mỗi đường

\(\Rightarrow\)O là trung điểm của BD và O là trung điểm của AC (*)

Ta có : AMCN là hình bình hành (cma)

\(\Rightarrow\)AC cắt MN tại trung điểm của mỗi đường 

\(\Rightarrow\)O là trụng điểm của MN (**)

Từ (*) ; (**) \(\Rightarrow\)AC ; BD ; MN đồng quy

c) Ta có : AM = CN (cmt)

mà \(CN=\frac{1}{2}DC\)(cmt)

\(\Rightarrow AM=\frac{1}{2}DC\)

\(\Rightarrow\)AM là đường trung bình của \(\Delta ECD\) 

        

16 tháng 10 2021

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

10 tháng 9 2020

a/ 

AB=CD (cạnh đối của hbh)

AM=AB/2; CN=CD/2 

=> AM=CN (1)

AM thuộc AB; CN thuộc CD mà AB//CD => AM//CN (2)

Từ (1) và (2) => AMCN là hbh (Tứ giác có cặp cạnh đối // và = nhau là hbh)

b/ Gọi O là giao của AC và BD => O là trung điểm của AC và BD (hai đường chéo hbh cắt nhau tại trung điểm mỗi đường)

Xét tứ giác BNDM có

MB thuộc AB; DN thuộc CD mà AB//CD => MB//DN

AB=CD (cmt) mà MB=AB/2 và DN=CD/2 => MB=DN

=> Tứ giác BNDM là hbh

Gọi O' là giao của MN và BD => O' là trung điểm của BD

Mà O cũng là trung điểm của BD => O trùng O' => AC; BD; MN đồng quy

c/

AM//DN vì vậy ko cắt nhau bạn xem lại đề bài

10 tháng 9 2020

a) ABCD là hình bình hành nên AB//CD, AB=CD

Vì M,N lần lượt là trung điểm AB,CD nên \(\hept{\begin{cases}AM//CN\\AM=CN\left(=\frac{1}{2}AB=\frac{1}{2}DC\right)\end{cases}}\)

=> ANCM là hình bình hành.

b) Gọi O là giao điểm AC và BD

Mà ABCD là hình bình hành nên O trung điểm AC và BD

Vì ANCM là hình bình hành nên MN và AC cắt nhau tại trung điểm AC

=> MN qua O ---> ĐPCM

c) Câu này đề hơi sai nha, AM//DN nên ko có chuyện cắt nhau nha !!

Ở đây mình xin sửa đề lại là AN cắt DM tại E và CM cắt BN tại F.

Xét NE là đường trung bình tam giác DMC\(\Rightarrow\hept{\begin{cases}NE//MC\\NE=\frac{1}{2}MC\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}NE//MF\\NE=MF\left(=\frac{1}{2}MC\right)\end{cases}}\)---> Vậy NEMF là hình bình hành.

13 tháng 9 2020

Ý c đề sai :))

13 tháng 9 2020

đề sai thì phải