K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

A D B C H

a) Xét tam giác ABD vuông tại A theo định lý pitago ta có

BD2=AB2+AD2

Thay AB= 6cm AD=BC=8cm ta được

BD2=62+86

BD=10 cm

Vậy BD=10cm

b) Xét tam giác ADH và tam giác BDA có

AHD =BAD=90 độ

D chung

do đó tg ADH ~ tg BDA

c) tg ADH ~ tg BDA (gg)

=> AD/BD = DH/DA hay AD2=DH.BD

d) Ta có AB//DC (ABCD là hcn)

=>góc ABD=góc CDB hay góc ABH = góc CDB

Xét tam giác AHB và Tam giác BCD có

C= BHA =90 độ

góc ABH = góc CDB(cmt)

do đó tg ABH ~ tg CDB (gg)

29 tháng 5 2018

Cho tam giác ABC , các đường cao BD,CE cắt nhau tại H . Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K . Gọi M là trung điểm của BC 
a) Chứng minh tam giác ADB~tam giác AEC
b) Chứng minh HE.HC=HD.HB
c) Chứng minh H,K,M thẳng hàng 
Tam giác ABC phải co điều kiện gì thì tứ giác BHCK là hình thoi ? Hình chữ nhật ?

28 tháng 3 2018

Hình:

A B C D H 8 6 1 1

~~~~

a/ Xét \(\Delta AHB\)\(\Delta DAB\) có:

\(\widehat{BHA}=\widehat{DAB}\left(=90^o\right)\)

\(\widehat{B_1}:chung\)

=> \(\Delta AHB\) ~ \(\Delta DAB\left(g.g\right)\)(1)

Cmtt có: \(\Delta DAB\sim\Delta BCD\left(g.g\right)\)(2)

Từ (1), (2) => \(\Delta AHB\sim\Delta BCD\)(t/c bắc cầu)

b/ Cmtt như ý a ta có: \(\Delta ADH\sim\Delta BDA\left(g.g\right)\)

=> \(\dfrac{AD}{BD}=\dfrac{DH}{AD}\)=> AD2 = DH . DB (đpcm)

c/ +) Áp dụng pytago vào tam giác ABD vuông tại A có:

\(DB^2=AB^2+AD^2=8^2+6^2=100\) => DB = 10cm

Có: \(AD^2=DH\cdot DB\) (ý b)

hay \(6^2=DH\cdot10\Rightarrow DH=\dfrac{36}{10}=3,6\)cm

+) Áp dụng pytago vào \(\Delta ADH\left(\widehat{DHA}=90^o\right)\) có:

\(AD^2=DH^2+AH^2\Rightarrow AH=\sqrt{AD^2-DH^2}\)

\(=\sqrt{6^2-3,6^2}=4,8cm\)

Vậy......

28 tháng 3 2018

a) Vì ABCD là HCN (gt) => \(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}\) (= 90 độ) và AB // CD

=> \(\widehat{ABD}=\widehat{BDC}\)

xét tam giác AHB và tam giác BCD có:

\(\widehat{ABD}=\widehat{BDC}\) (cmt)

\(\widehat{AHB}=\widehat{BCD}\) (= 90 độ)

=> tam giác AHB \(\sim\) tam giác BCD(gg)

b) xét tam giác AHD và tam giác BAD có:

\(\widehat{AHD}=\widehat{BAD}\) (= 90 độ)

\(\widehat{ADB}\) chung

=> tam giác AHD \(\sim\) tam giác BAD(gg)

=> \(\dfrac{AD}{BD}=\dfrac{HD}{AD}\) (các cạnh t/ứ tỉ lệ)

=> AD . AD = BD . HD => \(AD^2\) = BD . HD

c) Vì ABCD là HCN(gt) => AD = BC

Mà BC = 6 cm => AD = 6 cm

xét tam giác AED vuông tại A

Theo đ/lí Pytago:

\(BD^2\) = \(AD^2+AB^2\)

=> \(BD^2\)= 36 + 64

=> \(BD^2\)= 100

=> BD = 10 cm

\(AD^2\) = DH . DB (câu b) => DH = \(\dfrac{AD^2}{DB}\)

=> DH = \(\dfrac{36}{10}\)= 3,6 cm

vì tam giác AHB \(\sim\) tam giác BCD (câu a)

=> \(\dfrac{AH}{BC}=\dfrac{AB}{BD}\) (các canh t/ứ tỉ lệ)

=> AH = \(\dfrac{BC.AB}{BD}\)= \(\dfrac{6.8}{10}\)= 4,8 cm

a) Xét ΔAHB và ΔBCD có

\(\widehat{AHB}=\widehat{BCD}\left(=90^0\right)\)

\(\widehat{ABH}=\widehat{BDC}\)(so le trong, AB//DC)

Do đó: ΔAHB\(\sim\)ΔBCD(g-g)

b) Xét ΔAHD và ΔBAD có

\(\widehat{AHD}=\widehat{BAD}\left(=90^0\right)\)

\(\widehat{ADB}\) chung

Do đó: ΔAHD\(\sim\)ΔBAD(g-g)

\(\frac{AD}{BD}=\frac{HD}{AD}=\frac{AH}{BA}=k\)(tỉ số đồng dạng)

hay \(AD^2=HD\cdot BD\)

\(AD^2=DH\cdot DB\)(đpcm)

c) Ta có: BC=AD(hai cạnh đối trong hình chữ nhật ABCD)

mà BC=6cm

nên AD=6cm

Áp dụng định lí pytago vào ΔADB vuông tại A, ta được:

\(BD^2=AD^2+AB^2\)

hay \(BD^2=6^2+8^2=100\)

\(BD=\sqrt{100}=10cm\)

Ta có: \(\frac{AD}{BD}=\frac{HD}{AD}=\frac{AH}{BA}\)(cmt)

nên \(\frac{6}{10}=\frac{HD}{6}\)

\(HD=\frac{6\cdot6}{10}=\frac{36}{10}=3,6cm\)

Ta có: \(\frac{AD}{BD}=\frac{HD}{AD}=\frac{AH}{BA}\)(cmt)

nên \(\frac{3,6}{6}=\frac{AH}{8}\)

\(AH=\frac{3,6\cdot8}{6}=\frac{28,8}{6}=4,8cm\)

Vậy: HD=3,6cm và AH=4,8cm

d) Ta có: \(\frac{1}{AH^2}=\frac{1}{\left(4,8\right)^2}=\frac{1}{23,04}=\frac{25}{576}\)(1)

Ta có: \(\frac{1}{AB^2}+\frac{1}{AD^2}=\frac{1}{8^2}+\frac{1}{6^2}=\frac{1}{64}+\frac{1}{36}\)

\(=\frac{9}{576}+\frac{16}{576}=\frac{25}{576}\)(2)

Từ (1) và (2) suy ra \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\)(đpcm)

23 tháng 5 2020

Ko sao cả. Bạn làm giúp mik là ok rồi! yeu

23 tháng 1 2022

giúp😥😥

 

a: DB=10cm

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

\(\widehat{ADH}=\widehat{BDA}\)

Do đó: ΔADH\(\sim\)ΔBDA

c: Xét ΔBAD vuông tại A có AH là đường cao

nên \(AD^2=DH\cdot DB\)

12 tháng 3 2020

Bài 2:

A B C D H 1

a) Xét tam giác BDC vuông tại C có:

\(DC^2+BC^2=DB^2\)

\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)

\(\Rightarrow BD=10\left(cm\right)\)

b) tam giác BDA nhé

Xét tamg giác ADH và tam giác BDA có:

\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)

c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)

\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )

\(\Rightarrow AD^2=BD.DH\)

d) Xét tan giác AHB và tam giác BCD có:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)

( góc= 45 độ bạn tự cm nhé )

e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)

\(\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow AH=4,8\left(cm\right)\)

Dùng Py-ta-go làm nốt tính DH
 

12 tháng 3 2020

Bài 1

A B C H I D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

Thay AB=3cm, AC=4cm

\(\Rightarrow3^2+4^2=BC^2\)

<=> 9+16=BC2

<=> 25=BC2

<=> BC=5cm (BC>0)

2 tháng 5 2017

Vào câu hỏi tương tự nhé. Cứ kéo xuống sẽ thấy..

4 tháng 5 2017

Vào câu hỏi tương tự kiếm thử đii

4 tháng 5 2017

ko giống khác tý bạn ơi