Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)
hay \(AD^2=HD\cdot BD\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
ˆABH=ˆBDCABH^=BDC^
Do đó: ΔAHB∼∼ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
ˆADHADH^ chung
Do đó: ΔADH∼∼ΔBDA
Suy ra: ADBD=HDDAADBD=HDDA
hay AD2=HD⋅BD
A B C D 8 cm 6 cm 1 1
Áp dụng định lý PI ta go vào tam giác ADB có :
\(DB=\sqrt{AB^2+AD^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)
b.\(\text{Xét 2 tam giác ADH và tam giác ADB có:}\)
\(\widehat{A}=\widehat{H}=90^0\)
\(\widehat{D}\)\(\text{chung}\)
\(\Rightarrow\Delta ADH~\Delta ADB\left(gg\right)\)
b.\(\Rightarrow\frac{AD}{AD}=\frac{DH}{DB}\)
Hay \(\frac{AD}{DH}=\frac{DB}{AD}\)
\(\Rightarrow AD^2=DH.DB\)
c. \(\text{Xét 2 tam giác ABD và tam giác CDB có:}\)
\(\widehat{A}=\widehat{C}=90^0\)
\(\widehat{B_1}=\widehat{D_1}\left(slt\right)\)
\(\Rightarrow\Delta ABD~\Delta CDB\left(gg\right)\)
mà \(\Delta ADB~\Delta ADH\left(a\right)\)
\(\Rightarrow\Delta AHD~\Delta BCD\)
d. \(\Rightarrow\frac{AH}{BC}=\frac{HD}{CD}=\frac{AD}{BD}\)
\(\Rightarrow\frac{AH}{6}=\frac{DH}{8}=\frac{6}{10}\)
\(\Rightarrow AH=\frac{6.6}{10}=3,6\left(cm\right)\)
\(DH=\frac{6.8}{10}=4,8\left(cm\right)\)
Bài 2:
A B C D H 1
a) Xét tam giác BDC vuông tại C có:
\(DC^2+BC^2=DB^2\)
\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)
\(\Rightarrow BD=10\left(cm\right)\)
b) tam giác BDA nhé
Xét tamg giác ADH và tam giác BDA có:
\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)
c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)
\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )
\(\Rightarrow AD^2=BD.DH\)
d) Xét tan giác AHB và tam giác BCD có:
\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)
( góc= 45 độ bạn tự cm nhé )
e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)
\(\Rightarrow AD.AB=AH.BD\)
\(\Rightarrow AH=4,8\left(cm\right)\)
Dùng Py-ta-go làm nốt tính DH
Bài 1
A B C H I D
a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
Thay AB=3cm, AC=4cm
\(\Rightarrow3^2+4^2=BC^2\)
<=> 9+16=BC2
<=> 25=BC2
<=> BC=5cm (BC>0)
a: Xét ΔAHB vuông tạiH và ΔBCD vuông tại C có
góc ABH=góc BDC
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔABD vuông tại Acó HA là đừog cao
nên \(AD^2=DH\cdot DB\)
c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(DH=\dfrac{6^2}{10}=3.6\left(cm\right)\)
\(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)