Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2\)(BĐT Bunhiacopxki)
\(=\left(1+1+1\right)^2=9\)
Vậy \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>1\)
Vậy bài toán ko giải đc; Nếu mk làm sai thì thứ lỗi vì mk năm nay mới lên lớp 8
bạn chia a^2 cho ca tu và mẫu . từ giả thiết ta có : 3abc >= ab +bc+ ca . suy ra : 1/a + 1/b +1/c<=3 . sau khi chia ở A : ta có si ở mẫu . rồi áp dụng cô si ngc la ra . ban nao ko hieu thi nhan voi minh
Lời giải:
$a^{2014}+b^{2014}=a^{2015}+b^{2015}$
$\Leftrightarrow a^{2014}(a-1)+b^{2014}(b-1)=0(1)$
$a^{2015}+b^{2015}=a^{2016}+b^{2016}$
$\Leftrightarrow a^{2015}(a-1)+b^{2015}(b-1)=0(2)$
Lấy $(2)-(1)$ theo vế thu được: $a^{2014}(a-1)^2+b^{2014}(b-1)^2=0$
Ta thấy $a^{2014}(a-1)^2\geq 0; b^{2014}(b-1)^2\geq 0$ nên để tổng của chúng bằng $0$ thì:
$a^{2014}(a-1)^2=b^{2014}(b-1)^2=0$
Mà $a,b>0$ nên $a=b=1$
Do đó $S=2$
Lời giải với kiến thức lớp 8:
\(a^{2017}+b^{2017}\le a^{2018}+b^{2018}\)
\(\Leftrightarrow a^{2017}\left(a-1\right)+b^{2017}\left(b-1\right)\ge0\)
\(\Leftrightarrow a^{2017}\left(a-\frac{a+b}{2}\right)+b^{2017}\left(b-\frac{a+b}{2}\right)\ge0\)
\(\Leftrightarrow a^{2017}\cdot\frac{a-b}{2}+b^{2017}\cdot\frac{b-a}{2}\ge0\)
\(\Leftrightarrow\left(a^{2017}-b^{2017}\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^{2016}+a^{2015}b+a^{2014}b^2+...+b^{2016}\right)\ge0\)
Bất đẳng thức cuối đúng với mọi a, b. Do đó bất đẳng thức đã cho là đúng.