Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải với kiến thức lớp 8:
\(a^{2017}+b^{2017}\le a^{2018}+b^{2018}\)
\(\Leftrightarrow a^{2017}\left(a-1\right)+b^{2017}\left(b-1\right)\ge0\)
\(\Leftrightarrow a^{2017}\left(a-\frac{a+b}{2}\right)+b^{2017}\left(b-\frac{a+b}{2}\right)\ge0\)
\(\Leftrightarrow a^{2017}\cdot\frac{a-b}{2}+b^{2017}\cdot\frac{b-a}{2}\ge0\)
\(\Leftrightarrow\left(a^{2017}-b^{2017}\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^{2016}+a^{2015}b+a^{2014}b^2+...+b^{2016}\right)\ge0\)
Bất đẳng thức cuối đúng với mọi a, b. Do đó bất đẳng thức đã cho là đúng.
Có \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2\)(BĐT Bunhiacopxki)
\(=\left(1+1+1\right)^2=9\)
Vậy \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>1\)
Vậy bài toán ko giải đc; Nếu mk làm sai thì thứ lỗi vì mk năm nay mới lên lớp 8
Lời giải:
Câu GPT: bạn xem lại đề bài.
Câu so sánh
Áp dụng hằng đẳng thức: \((a-b)(a+b)=a^2-b^2\Rightarrow a-b=\frac{a^2-b^2}{a+b}\) vào bài toán ta có:
\(\sqrt{2018}-\sqrt{2017}=\frac{2018-2017}{\sqrt{2018}+\sqrt{2017}}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)
\(\sqrt{2019}-\sqrt{2018}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\frac{1}{\sqrt{2019}+\sqrt{2018}}\)
Mà dễ thấy \(0< \sqrt{2018}+\sqrt{2017}< \sqrt{2019}+\sqrt{2018}\Rightarrow \frac{1}{\sqrt{2018}+\sqrt{2017}}> \frac{1}{\sqrt{2019}+\sqrt{2018}}\)
\(\Rightarrow \sqrt{2018}-\sqrt{2017}> \sqrt{2019}-\sqrt{2018}\)
\(2016^{2015}\equiv2016\left(mod2017\right)\)
\(2018^{2016}\equiv1\left(mod2017\right)\)
Suy ra : \(2016^{2015}+2018^{2016}\equiv1+2016\equiv0\left(mod2017\right)\)
Vậy \(2016^{2015}+2018^{2016}⋮2017\)
này rảnh ko giúp minh tí đi
1 người đi xe máy dự dịnh đi từ A đến B với vận tốc 36km/h.nhưng khi thực hiện người ấy giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút. Tính quãng đường AB