Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thành lập một biểu thức có dạng như sau:
\(\left(a^{2015}+b^{2015}\right)\left(a+b\right)-\left(a^{2014}+b^{2014}\right)ab=a^{2016}+b^{2016}\) \(\left(1\right)\)
Mà \(a^{2014}+b^{2014}=a^{2015}+b^{2015}=a^{2016}+b^{2016}\) (theo gt)
nên từ \(\left(1\right)\) suy ra \(\left(a^{2016}+b^{2016}\right)\left(a+b\right)-\left(a^{2016}+b^{2016}\right)ab=a^{2016}+b^{2016}\)
\(\Leftrightarrow\) \(\left(a^{2016}+b^{2016}\right)\left(a+b-ab\right)=a^{2016}+b^{2016}\)
\(\Leftrightarrow\) \(a+b-ab=1\) (do \(a^{2016}+b^{2016}\ne0\))
\(\Leftrightarrow\) \(\left(1-a\right)\left(b-1\right)=0\)
\(\Leftrightarrow\) \(\orbr{\begin{cases}1-a=0\\b-1=0\end{cases}}\) \(\Leftrightarrow\) \(\orbr{\begin{cases}a=1\\b=1\end{cases}}\)
Với \(a=1\) thì ta dễ dàng suy ra \(b=1\)
Tương tự với \(b=1\)
Vậy, \(\left(x,y\right)=\left(1,1\right)\)
Bạn tham khảo lời giải tại đây:
Câu hỏi của miumiucute - Toán lớp 9 | Học trực tuyến
Ta có:
\(a^{2006}+a^{2008}+b^{2006}+b^{2008}\ge2\left(a^{2007}+b^{2007}\right)\)
Dấu = xảy ra khi \(a=b=1\)
\(\Rightarrow S=a^{2009}+b^{2009}=2\)
Lời giải:
$a^{2014}+b^{2014}=a^{2015}+b^{2015}$
$\Leftrightarrow a^{2014}(a-1)+b^{2014}(b-1)=0(1)$
$a^{2015}+b^{2015}=a^{2016}+b^{2016}$
$\Leftrightarrow a^{2015}(a-1)+b^{2015}(b-1)=0(2)$
Lấy $(2)-(1)$ theo vế thu được: $a^{2014}(a-1)^2+b^{2014}(b-1)^2=0$
Ta thấy $a^{2014}(a-1)^2\geq 0; b^{2014}(b-1)^2\geq 0$ nên để tổng của chúng bằng $0$ thì:
$a^{2014}(a-1)^2=b^{2014}(b-1)^2=0$
Mà $a,b>0$ nên $a=b=1$
Do đó $S=2$