K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 7 2020

Lời giải:

$a^{2014}+b^{2014}=a^{2015}+b^{2015}$

$\Leftrightarrow a^{2014}(a-1)+b^{2014}(b-1)=0(1)$

$a^{2015}+b^{2015}=a^{2016}+b^{2016}$

$\Leftrightarrow a^{2015}(a-1)+b^{2015}(b-1)=0(2)$

Lấy $(2)-(1)$ theo vế thu được: $a^{2014}(a-1)^2+b^{2014}(b-1)^2=0$

Ta thấy $a^{2014}(a-1)^2\geq 0; b^{2014}(b-1)^2\geq 0$ nên để tổng của chúng bằng $0$ thì:

$a^{2014}(a-1)^2=b^{2014}(b-1)^2=0$

Mà $a,b>0$ nên $a=b=1$

Do đó $S=2$

17 tháng 7 2016

fghgffh

17 tháng 7 2016

Ta thành lập một biểu thức có dạng như sau:

\(\left(a^{2015}+b^{2015}\right)\left(a+b\right)-\left(a^{2014}+b^{2014}\right)ab=a^{2016}+b^{2016}\)  \(\left(1\right)\)

Mà  \(a^{2014}+b^{2014}=a^{2015}+b^{2015}=a^{2016}+b^{2016}\)  (theo gt)

nên từ  \(\left(1\right)\)  suy ra  \(\left(a^{2016}+b^{2016}\right)\left(a+b\right)-\left(a^{2016}+b^{2016}\right)ab=a^{2016}+b^{2016}\)

\(\Leftrightarrow\)  \(\left(a^{2016}+b^{2016}\right)\left(a+b-ab\right)=a^{2016}+b^{2016}\)

\(\Leftrightarrow\)  \(a+b-ab=1\)  (do   \(a^{2016}+b^{2016}\ne0\))

\(\Leftrightarrow\) \(\left(1-a\right)\left(b-1\right)=0\)

\(\Leftrightarrow\)  \(\orbr{\begin{cases}1-a=0\\b-1=0\end{cases}}\)  \(\Leftrightarrow\)  \(\orbr{\begin{cases}a=1\\b=1\end{cases}}\)

Với  \(a=1\)  thì ta dễ dàng suy ra  \(b=1\)

Tương tự với  \(b=1\)

Vậy,  \(\left(x,y\right)=\left(1,1\right)\)

AH
Akai Haruma
Giáo viên
22 tháng 7 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của miumiucute - Toán lớp 9 | Học trực tuyến

11 tháng 1 2019

Ta có:

\(a^{2006}+a^{2008}+b^{2006}+b^{2008}\ge2\left(a^{2007}+b^{2007}\right)\)

Dấu = xảy ra khi \(a=b=1\)

\(\Rightarrow S=a^{2009}+b^{2009}=2\)

12 tháng 1 2019

Tối nay nhé

12 tháng 1 2019

bớt cái thái độ vô học nhé!