K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

THam  khảo:Cho phương trình X^2-2mX+2m-1=0. Tìm m để phương trình trên có hai nghiệm X1 và X2 thoả mãn X1=3(X2)?

  Phương trình X^2-2mX+2m-1=0 có 
∆' = m^2-2m+1 = (m-1)^2 ≥ 0 với mọi m 
nên pt có hai nghiệm x1, x2 với mọi m 
Theo vi ét ta có 
x1+x2=2m (1) 
x1.x2=2m-1 (2) 
mà x1 = 3x2 (3) 
Thay (3) vào (1) ta có 4x2=2m suy ra x2 = m/2 
Do đó x1 = 3.m/2 = 3m/2 
Thế x1 và x2 vào (2) ta có phương trình: 
3m/2 . m/2 = 2m-1 
<=> 3m^2-8m+4=0 
∆' = 4 suy ra √∆ = 2 
Do đó 
m1=(4+2)/3 = 2 
m2=(4-2)/3=2/3 
Vậy với m = 2 hoặc m = 2/3 thì 
phương trình X^2-2mX+2m-1=0 có 
hai nghiệm X1 và X2 thoả mãn X1=3(X2) 

Chúc thành công

1 tháng 3 2018

rat dung

okkkkkkkkk

6 tháng 7 2017

Để PT có 2 nghiệm phân biệt thì

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)>0\)

\(\Leftrightarrow m< 0\)

Theo vi et ta có:

\(\hept{\begin{cases}x_1+x_2=-2m+4\\x_1.x_2=m^2-2m+4\end{cases}}\)

Theo đề bài thì

\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)

\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1.x_2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)

\(\Leftrightarrow\frac{2}{\left(-2m+4\right)^2-2\left(m^2-2m+4\right)}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)

\(\Leftrightarrow\frac{1}{m^2-6m+4}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)

\(\Leftrightarrow15m^4-120m^3+296m^2-480m+240=0\)

Với m < 0  thì VP > 0 

Vậy không tồn tại m để thỏa bài toán.

9 tháng 6 2017

\(\Delta\) = 52 - 4(m - 2) = 25 - 4m + 8 = 33 - 4m

phương trình có 2 nghiệm phân biệt

\(\Leftrightarrow\) \(\Delta\) > 0 \(\Leftrightarrow\) 33 - 4m > 0 \(\Leftrightarrow\) - 4m > - 33 \(\Leftrightarrow\) m < \(\dfrac{33}{4}\)

phương trình có 2 nghiệm dương \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1+x_2>0\\x_1.x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}5>0\\m-2>0\end{matrix}\right.\) \(\Leftrightarrow\) m > 2

ta có : \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)\) = 3 \(\Leftrightarrow\) \(2\left(\dfrac{\sqrt{x_1}+\sqrt{x_2}}{\sqrt{x_1.x_2}}\right)\) = 3

\(\Leftrightarrow\) \(\dfrac{2\left(\sqrt{x_1}+\sqrt{x_2}\right)}{\sqrt{x_1.x_2}}\) = 3 \(\Leftrightarrow\) \(2\left(\sqrt{x_1}+\sqrt{x_2}\right)\) = \(3\sqrt{x_1.x_2}\)

\(\Leftrightarrow\) \(2\sqrt{x_1}\) + \(2\sqrt{x_2}\) = \(3\sqrt{x_1.x_2}\) \(\Leftrightarrow\) \(\left(2\sqrt{x_1}+2\sqrt{x_2}\right)^2\) = \(\left(3\sqrt{x_1.x_2}\right)^2\)

\(\Leftrightarrow\) 4x1 + 8\(\sqrt{x_1.x_2}\) + 4x2 = 9x1.x2 \(\Leftrightarrow\) 4(x1 + x2) + 8\(\sqrt{x_1.x_2}\) = 9x1.x2

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1.x_2=m-2\end{matrix}\right.\)

thay vào ta có : 20 + 8\(\sqrt{m-2}\) = 9(m-2)

\(\Leftrightarrow\) 20 + 8\(\sqrt{m-2}\) = 9m - 18 \(\Leftrightarrow\) 9m - 38 = 8\(\sqrt{m-2}\)

\(\Leftrightarrow\) (9m - 38)2 = 64 (m - 2) (vì m - 2 > 0)

\(\Leftrightarrow\) 81m2 - 684m + 1444 = 64m - 128

\(\Leftrightarrow\) 81m2 - 748m + 1572 = 0

giải phương trình ta được m = 6 ; m = \(\dfrac{262}{81}\) (đều thỏa mảng điều kiện)

vậy m = 6 ; m = \(\dfrac{262}{81}\) là thỏa mãng điều kiện bài toán

25 tháng 4 2015

làm dài lắm nhưng mình nghĩ kết quả cuối cùng là m = -3

 

25 tháng 4 2015

sory nha mik mới hok lớp 6 không giải bài lớp 9 đc

11 tháng 3 2022

undefined

24 tháng 5 2020

\(x^2+3x+m-3=0\)

Ta có \(\Delta=b^2-4ac\)

             \(=3^2-4.1.\left(m-3\right)\)

             \(=9-4m+12\)

             \(=21-4m\)

Đẻ pt có 2 nghiệm \(x_1;x_2\)\(\Leftrightarrow\Delta\ge0\Leftrightarrow21-4m\ge0\)

                                                  \(\Leftrightarrow x\le\frac{21}{4}\)

Áp dụng vi-ét ta có 

\(\hept{\begin{cases}x_1+x_2=-3\\x_1.x_2=m-3\end{cases}}\)

Ta có \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=5\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=5\)

                                        \(\Leftrightarrow x_1^2+x_2^2=5x_1x_2\)

                                        \(\Leftrightarrow x_1^2+x_2^2-5x_1.x_2=0\)

                                       \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5x_1x_2=0\)

                                        \(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=0\)

                                       \(\Leftrightarrow\left(-3\right)^2-7\left(m-3\right)=0\)

                                        \(\Leftrightarrow9-7m+21=0\)

                                        \(\Leftrightarrow30-7m=0\)

                                        \(\Leftrightarrow7m=30\)

                                       \(\Leftrightarrow m=\frac{30}{7}\) (TM)

Vậy \(m=\frac{30}{7}\) thì thỏa mãn bài toán 

25 tháng 5 2020

vẽ hộ cái hình