Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B M I A C
a) Ta lần lượt xét:
- Trong \(\Delta AMI\), ta có:
\(MA< IA+IM\Leftrightarrow MA+MB< IA+IM+MB\)
\(\Leftrightarrow MA+MB< IA+IB\) (1)
- Trong \(\Delta BIC\),ta có:
\(IB< CI+CB\Leftrightarrow IA+IB< IA+CI+CB\)
\(\Leftrightarrow IA+IB< CA+CB\) (2)
Từ (1), (2), ta nhận được \(MA+MB< IA+IB< CA+CB,đpcm\)
b) Ta lần lượt xét:
- Trong \(\Delta MAB\), ta có \(MA+MB>AB\left(3\right)\)
- Trong \(\Delta MBC\), ta có \(MB+MC>BC\left(4\right)\)
- Trong \(\Delta MAC,\)ta có \(MA+MC>AC\left(5\right)\)
Cộng theo vế (3),(4),(5), ta được:
\(2\left(MA+MB+MC\right)>AB+BC+AC\)
\(\Leftrightarrow MA+MB+MC>\frac{1}{2}\left(AB+BC+AC\right),đpcm.\)
Mặt khác dựa theo kết quả cua câu a), ta có:
\(MA+MB< CA+CB\left(6\right)\)
\(MB+MC< AB+AC\left(7\right)\)
\(MA+MC< BA+BC\left(8\right)\)
Cộng theo vế (6),(7),(8), ta được:
\(2\left(MA+MB+MC\right)< 2\left(AB+BC+AC\right)\)
\(\Leftrightarrow MA+MB+MC< AB+BC+AC,đpcm.\)
CMTT : Ta được :
MA + MC < BA + BC
MB + MC < AB + AC
=> MA + MB + MC + MC < BA + Bc + AB + AC
=> MA + MB + 2MC < 2BA + BC + AC
=> MA + MB + MC < BA + BC + AC ( ĐPcm )
1/
A B C M
Ta có MA + MB > AB (bất đẳng thức tam giác)
MA + MC > AC (bất đẳng thức tam giác)
MB + MC > BC (bất đẳng thức tam giác)
=> 2 (MA + MB + MC) > AB + AC + BC
=> \(MA+MB+MC>\frac{AB+AC+BC}{2}\) (1)
Ta có MA + MB < AC + BC (bất đẳng thức tam giác)
MB + MC < AB + AC (bất đẳng thức tam giác)
MA + MC < AB + BC (bất đẳng thức tam giác)
=> 2 (MA + MB + MC) < 2 (AB + AC + BC)
=> MA + MB + MC < AB + AC + BC (2)
Từ (1) và (2) => \(\frac{1}{2}\left(AB+AC+BC\right)< AM+BM+CM< AB+AC+BC\)(đpcm)
2/
A B C M I
Kéo dài tia MB cắt AC tại I.
\(\Delta AMI\)có: MA < IA + MI (bất đẳng thức tam giác) (*)
Cộng hai vế của (*) cho MB, ta có: MA + MB < IA + MI + MB
=> MA + MB < IA + IB (1)
\(\Delta BIC\)có: IB < IC + BC (bất đẳng thức tam giác) (**)
Cộng hai vế của (**) cho IA, ta có: IA + IB < IA + IC + BC
=> IA + IB < AC + BC (2)
Từ (1) và (2) => MA + MB < AC + BC (đpcm)