K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

CMTT : Ta được : 

MA + MC < BA + BC 

MB + MC < AB + AC 

=> MA + MB + MC + MC < BA + Bc + AB + AC 

=> MA + MB + 2MC < 2BA + BC + AC 

=>      MA + MB + MC < BA + BC + AC ( ĐPcm ) 

8 tháng 3 2019

a, vì M nằm ở trong tam giác ABC nên MC và MB nằm ở trong tam giác ABC 

   =) MC va MB lần lượt chia  góc C và B làm 2 nửa

    =) ^B = ^B1+ ^B2                             ^C= ^C1+^C2

      theo quan hệ giứa góc và cạnh đối diên có

                  ab tương ứng vs góc C, ac tương ứng vs góc B

                    MB .........................C1, MC                          B2

     CÓ : ^B+^C > ^B2+^C2

      =) AB+AC > MB+MC ( THEO QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN)

CON B THÌ CHỊU NHÉ 

8 tháng 3 2019

A B C M

a) Làm như bạn ly

b)Từ câu a) suy ra MB + MC < AB + AC;MA+MB < AC + BC

MA + MC < AB + BC

Cộng theo vế suy ra: \(2\left(MA+MB+MC\right)< 2\left(AB+BC+CA\right)\)

Suy ra \(MA+MB+MC< AB+BC+CA\) (1)

Mặt khác,áp dụng BĐT tam giácL

MB + MC > BC.Tương tự với hai BĐT còn lại và cộng theo vế: \(2\left(MA+MB+MC\right)>AB+BC+CA\)

Chia hai vế cho 2: \(MA+MB+MC>\frac{AB+BC+CA}{2}\)

6 tháng 7 2019

B M I A C

a) Ta lần lượt xét:

  • Trong \(\Delta AMI\), ta có:

                              \(MA< IA+IM\Leftrightarrow MA+MB< IA+IM+MB\)

                             \(\Leftrightarrow MA+MB< IA+IB\)                (1)

  • Trong \(\Delta BIC\),ta có:

                              \(IB< CI+CB\Leftrightarrow IA+IB< IA+CI+CB\)

                              \(\Leftrightarrow IA+IB< CA+CB\)                 (2)

Từ (1), (2), ta nhận được  \(MA+MB< IA+IB< CA+CB,đpcm\)

b) Ta lần lượt xét:

  • Trong \(\Delta MAB\), ta có \(MA+MB>AB\left(3\right)\)
  • Trong \(\Delta MBC\), ta có \(MB+MC>BC\left(4\right)\)
  • Trong \(\Delta MAC,\)ta có \(MA+MC>AC\left(5\right)\)

Cộng theo vế (3),(4),(5), ta được:

\(2\left(MA+MB+MC\right)>AB+BC+AC\)

\(\Leftrightarrow MA+MB+MC>\frac{1}{2}\left(AB+BC+AC\right),đpcm.\)

Mặt khác dựa theo kết quả cua câu a), ta có:

\(MA+MB< CA+CB\left(6\right)\)

\(MB+MC< AB+AC\left(7\right)\)

\(MA+MC< BA+BC\left(8\right)\)

Cộng theo vế (6),(7),(8), ta được:

\(2\left(MA+MB+MC\right)< 2\left(AB+BC+AC\right)\)

\(\Leftrightarrow MA+MB+MC< AB+BC+AC,đpcm.\)

4 tháng 6 2018

Ta có:

A B C O

\(OA+OB< AC+BC\)

\(OA+OC< AB+BC\)

\(OC+OB< AB+AC\) 

Cộng theo từng vế ba bất đẳng thức trên ta được :

\(2\left(OA+OB+OC\right)< 2\left(AB+AC+BC\right)\)

hay \(OA+OB+OC< AB+AC+BC\)(1)

Mặt khác trong các tam giác OAB,OBC,OCA,theo bất đẳng thức tam giác ta lại có :

\(OA+OB>AB\)

\(OB+OC>BC\)

\(OC+OA>AC\)

Cộng theo từng vế ba bất đẳng thức trên, ta được :

\(2\left(OA+OB+OC\right)>AB+BC+AC\)

hay \(OA+OB+OC>\frac{AB+AC+BC}{2}\)(2)

Từ (1) và (2) :

\(\Rightarrow\frac{AB+AC+BC}{2}< OA+OB+OC< AB+AC+BC.\)

14 tháng 4 2020

Không làm mà đòi có ăn thì  ............................................

14 tháng 4 2020

Nguôi ta de len day de giúp chu ko de cho may Súa nhe con .......

6 tháng 7 2019
Bạn tham khảo cách làm của mình tại link dưới (mình inbox riêng để khỏi phải gõ nhé) https://olm.vn/hoi-dap/detail/218733018604.html
24 tháng 3 2018

1/

A B C M

Ta có MA + MB > AB (bất đẳng thức tam giác)

MA + MC > AC (bất đẳng thức tam giác)

MB + MC > BC (bất đẳng thức tam giác)

=> 2 (MA + MB + MC) > AB + AC + BC

=> \(MA+MB+MC>\frac{AB+AC+BC}{2}\) (1)

Ta có MA + MB < AC + BC (bất đẳng thức tam giác)

MB + MC < AB + AC (bất đẳng thức tam giác)

MA + MC < AB + BC (bất đẳng thức tam giác)

=> 2 (MA + MB + MC) < 2 (AB + AC + BC)

=> MA + MB + MC < AB + AC + BC (2)

Từ (1) và (2) => \(\frac{1}{2}\left(AB+AC+BC\right)< AM+BM+CM< AB+AC+BC\)(đpcm)

25 tháng 3 2018

2/


A B C M I

Kéo dài tia MB cắt AC tại I.

\(\Delta AMI\)có: MA < IA + MI (bất đẳng thức tam giác) (*)

Cộng hai vế của (*) cho MB, ta có: MA + MB < IA + MI + MB

=> MA + MB < IA + IB (1)

\(\Delta BIC\)có: IB < IC + BC (bất đẳng thức tam giác) (**)

Cộng hai vế của (**) cho IA, ta có: IA + IB < IA + IC + BC

=> IA + IB < AC + BC (2)

Từ (1) và (2) => MA + MB < AC + BC (đpcm)