Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
A B C M
Ta có MA + MB > AB (bất đẳng thức tam giác)
MA + MC > AC (bất đẳng thức tam giác)
MB + MC > BC (bất đẳng thức tam giác)
=> 2 (MA + MB + MC) > AB + AC + BC
=> \(MA+MB+MC>\frac{AB+AC+BC}{2}\) (1)
Ta có MA + MB < AC + BC (bất đẳng thức tam giác)
MB + MC < AB + AC (bất đẳng thức tam giác)
MA + MC < AB + BC (bất đẳng thức tam giác)
=> 2 (MA + MB + MC) < 2 (AB + AC + BC)
=> MA + MB + MC < AB + AC + BC (2)
Từ (1) và (2) => \(\frac{1}{2}\left(AB+AC+BC\right)< AM+BM+CM< AB+AC+BC\)(đpcm)
2/
A B C M I
Kéo dài tia MB cắt AC tại I.
\(\Delta AMI\)có: MA < IA + MI (bất đẳng thức tam giác) (*)
Cộng hai vế của (*) cho MB, ta có: MA + MB < IA + MI + MB
=> MA + MB < IA + IB (1)
\(\Delta BIC\)có: IB < IC + BC (bất đẳng thức tam giác) (**)
Cộng hai vế của (**) cho IA, ta có: IA + IB < IA + IC + BC
=> IA + IB < AC + BC (2)
Từ (1) và (2) => MA + MB < AC + BC (đpcm)