Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) - Để chứng minh rằng 2 ∈ A, ta cần tìm một số nguyên k sao cho 3k + 2 = 2. Thấy ngay k = 0 là thỏa mãn, vì 3*0 + 2 = 2. Vậy 2 ∈ A.- Để chứng minh rằng 7 ∉ B, ta cần chứng minh rằng không tồn tại số nguyên m để 6m + 2 = 7. Giả sử tồn tại m, ta có 6m = 5, nhưng đây là một phương trình vô lý vì 6 không chia hết cho 5. Vậy 7 ∉ B.- Để kiểm tra xem số 18 có thuộc tập hợp A hay không, ta cần tìm một số nguyên k sao cho 3k + 2 = 18. Giải phương trình này, ta có 3k = 16, vì 3 không chia hết cho 16 nên không tồn tại số nguyên k thỏa mãn. Vậy số 18 không thuộc
Giả sử x ∈ B, x = 6m + 4, m ∈ Z. Khi đó ta có thể viết x = 3(2m + 1) + 1
Đặt k = 2m + 1 thì k ∈ Z vào ta có x = 3k + 1, suy ra x ∈ A
Như vậy x ∈ B ⇒ x ∈ A
hay B ⊂ A
Tập A là tập các số chia 3 dư 1
Tập B có dạng tổng quát 6m + 4 = 6m + 3 +1 => tập các số chia 3 dư 1
=> \(B\subset A\)
P/s
Để \(\dfrac{3}{\left|x\right|}>1\) thì \(\dfrac{3}{\left|x\right|}-1>0\)
=>\(\dfrac{3-\left|x\right|}{\left|x\right|}>0\)
=>\(3-\left|x\right|>0\)
=>\(\left|x\right|< 3\)
mà x nguyên và x<>0
nên \(x\in\left\{1;-1;2;-2\right\}\)
=>\(2x^2-1\in\left\{1;1;7;7\right\}\)
=>A={1;7}
\(1< =x^2< =81\)
mà \(x\in\)N*
nên \(x^2\in\left\{1;4;9;16;25;36;49;64;81\right\}\)
=>\(x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)
=>B={1;2;3;4;5;6;7;8;9}
A={1;7}; B={1;2;3;4;5;6;7;8;9}
\(C_AB=A\text{B}=\varnothing\)
=>\(X=\varnothing\)
=>Tập X không có phần tử nào là số nguyên tố
Ta có: x = 3k+1 , k Є Z => x ∈ A
Gọi x' = 6m + 4 Є Z , ∀ x ∈ B
Ta có:
x' = 6m + 4 = 6m + 3 + 1 = 3(2m + 1) + 1
Do (2m + 1) ∈ Z nên đặt (2m + 1) = k' ∈ Z với k' là số lẻ
\(\Rightarrow\)x' = 3k' + 1 ∈ Z
\(\Rightarrow\)x' \(\in\) A
\(\Rightarrow\)B \(\in\) A
a) \(2x^3-3x^2-5x=0\)
\(x\left(x+1\right)\left(2x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=-1\left(TM\right)\\x=\dfrac{5}{2}\left(L\right)\end{matrix}\right.\)
\(A=\left\{-1\right\}\)
b) \(x< \left|3\right|\)\(\Leftrightarrow-3< x< 3\)
\(B=\left\{-2;-1;1;2\right\}\)
c) \(C=\left\{-3;3;6;9\right\}\)
a) \(A=\left\{x\in Z|2x^3-3x^2-5x=0\right\}\)
\(2x^3-3x^2-5x=0\)
\(\Leftrightarrow x\left(2x^2-3x-5\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow A=\left\{0;-1\right\}\)
b) \(B=\left\{-2;-1;0;1;2\right\}\)
c) \(C=\left\{-3;3;6;9\right\}\)
giả sử \(\text{x ∈ B, x = 6m + 4, m ∈ Z}\) . Khi đó ta có thể viết \(\text{ x = 3(2m + 1) + 1}\)
Đặt \(\text{k = 2m + 1}\) thì thay \(\text{ k ∈ Z}\) vào ta có \(\text{x = 3k + 1}\Rightarrow\text{x ∈ A}\)
Như vậy \(\text{x ∈ B ⇒ x ∈ A}\)
Hay \(\text{B ⊂ A}\)