Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x = 3k+1 , k Є Z => x ∈ A
Gọi x' = 6m + 4 Є Z , ∀ x ∈ B
Ta có:
x' = 6m + 4 = 6m + 3 + 1 = 3(2m + 1) + 1
Do (2m + 1) ∈ Z nên đặt (2m + 1) = k' ∈ Z với k' là số lẻ
\(\Rightarrow\)x' = 3k' + 1 ∈ Z
\(\Rightarrow\)x' \(\in\) A
\(\Rightarrow\)B \(\in\) A
Vì B là tập các số nguyên có tận cùng là 0;2;4;6;8
nên B là tập các số chẵn
=>A=B
Vì 2k-2=2(k-1) chia hết cho 2
nên C là tập các số chẵn
=>A=C
1: A={-3;-2;-1;0;1;2;3}
B={2;-2;4;-4}
A giao B={2;-2}
A hợp B={-3;-2;-1;0;1;2;3;4;-4}
2: x thuộc A giao B
=>\(x=\left\{2;-2\right\}\)
Ta thấy 3k+1 là số chẵn, 6m+1 là số lẻ với \(k,m\ne0\). Với k=m=0: 3k+1=6m+1=1.
Vậy \(A\cap B=\left\{1\right\}\);A\B={3k+1|\(k\in\text{ℕ*}\)}
#Walker
\(3k-1=5m-2\)
\(\Leftrightarrow3k-9=5m-10\)
\(\Leftrightarrow3\left(k-3\right)=5\left(m-2\right)\)
Do 3 và 5 nguyên tố cùng nhau \(\Rightarrow k-3⋮5\Rightarrow k=5n+3\) với \(n\in Z\)
Vậy \(A\cap B=\left\{5n+3|n\in Z\right\}\)
\(11-3x>0\Leftrightarrow x< \frac{11}{3}\Rightarrow A=\left\{0;1;2;3\right\}\)
\(B=\left\{-3;-2;-1;0;1;2;3\right\}\)
\(A\cup B=B=...\)
\(A\cap B=A=...\)
\(C_BA=\left\{-3;-2;-1\right\}\)
\(A\backslash B=\varnothing\)
\(B\backslash A=\left\{-3;-2;-1\right\}\)
\(X=A;\left\{-3;0;1;2;3\right\};\left\{-2;0;1;2;3\right\};\left\{-1;0;1;2;3\right\}\) ; \(\left\{-3;-2;0;1;2;3\right\};\left\{-3;-1;0;1;2;3\right\};\left\{-2;-1;0;1;2;3\right\};B\)
a) A={-16; -13; -10; -7; -4; -1; 2; 5; 8}
b) B={-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9}
c) C={-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2}
Tập A là tập các số chia 3 dư 1
Tập B có dạng tổng quát 6m + 4 = 6m + 3 +1 => tập các số chia 3 dư 1
=> \(B\subset A\)
P/s