Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)
\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)
\(\Leftrightarrow8x=-\frac{5}{4}\)
\(\Leftrightarrow x=-\frac{5}{32}\)
c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)
\(\Leftrightarrow x+1=2003\)
\(\Leftrightarrow x=2002\)
\(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{\left(\dfrac{1}{2017}+1\right)+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{3}{2015}+1\right)+...+\left(\dfrac{2016}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{\dfrac{2018}{2017}+\dfrac{2018}{2016}+\dfrac{2018}{2015}+...+\dfrac{2018}{2}+\dfrac{2018}{2018}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}=2018\)
a/ Ta có :
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...........+\dfrac{1}{n^2}\)
Ta thấy :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
.......................
\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)
\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...........+\dfrac{1}{\left(n-1\right)n}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(\Leftrightarrow A< 1-\dfrac{1}{n}< 1\)
\(\Leftrightarrow A< 1\)
b/ Ta có :
\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+.................+\dfrac{1}{\left(2n\right)^2}\)
\(=\dfrac{1}{4}\left(1+\dfrac{1}{2^2}+\dfrac{1}{4^2}+..........+\dfrac{1}{n^2}\right)\)
Ta thấy :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
..................
\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)
\(\Leftrightarrow B< \dfrac{1}{4}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.........+\dfrac{1}{\left(n-1\right)n}\right)\)
\(\Leftrightarrow B< \dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+......+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)
\(\Leftrightarrow B< \dfrac{1}{4}\left(1+1-\dfrac{1}{n}\right)\)
\(\Leftrightarrow B< \dfrac{1}{2}-\dfrac{1}{4n}< \dfrac{1}{2}\)
\(\Leftrightarrow B< \dfrac{1}{2}\)
\(\)\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(A< 1-\dfrac{1}{n}< 1\)
\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2n^2}\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2n^2}\right)\)
\(B=\dfrac{1}{4}+\dfrac{1}{2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2n^2}\right)\)
\(B< \dfrac{1}{4}+\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{\left(n-1\right)n}\right)\)
a) Giải
Ta có: \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}+\dfrac{1}{2^{2013}}\)
\(\Rightarrow2S=\dfrac{2}{2}+\dfrac{2}{2^2}+\dfrac{2}{2^3}+...+\dfrac{2}{2^{2012}}+\dfrac{2}{2^{2013}}\)
\(2S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}\)
\(\Rightarrow2S-S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{2012}}-\dfrac{1}{2^{2013}}\)
\(\Rightarrow S=1-\dfrac{1}{2^{2013}}\)
\(\Rightarrow S=\dfrac{2^{2013}-1}{2^{2013}}\)
b) Giải
Từ \(A=\dfrac{2011^{2012}+1}{2011^{2013}+1}\)
\(\Rightarrow2011A=\dfrac{2011^{2013}+20111}{2011^{2013}+1}=\dfrac{2011^{2013}+1+2010}{2011^{2013}+1}=1+\dfrac{2010}{2011^{2013}+1}\)
Từ \(B=\dfrac{2011^{2013}+1}{2011^{2014}+1}\)
\(\Rightarrow2011B=\dfrac{2011^{2014}+2011}{2011^{2014}+1}=\dfrac{2011^{2014}+1+2010}{2011^{2014}+1}=1+\dfrac{2010}{2011^{2014}+1}\)
Vì 20112013 + 1 < 20112014 + 1 và 2010 > 0
\(\Rightarrow\dfrac{2010}{2011^{2013}+1}>\dfrac{2010}{2011^{2014}+1}\)
\(\Rightarrow2011A>2011B\)
\(\Rightarrow A>B\)
Vậy A > B.
a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2016}}\)
\(\Rightarrow2A-A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^{2016}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\right)\)
\(\Rightarrow A=1-\dfrac{1}{2^{2017}}\)
Vậy \(A=1-\dfrac{1}{2^{2017}}\)
b) \(1-\dfrac{1}{2^{2017}}< 1\Rightarrow A< 1\)
Vậy A < 1
Quá hay