Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow10+2\left(ab+bc+ca\right)=0\Leftrightarrow ab+bc+ca=-5\)
\(\Rightarrow\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=25\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right).0=25\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=25\)
\(a^2+b^2+c^2=10\Leftrightarrow\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=100\)
\(\Leftrightarrow a^4+b^4+c^4+2.25=100\Leftrightarrow a^4+b^4+c^4=50\)
\(A=a^2\left(1-a^2\right)+b^2\left(1-b^2\right)+c^2\left(1-c^2\right)=a^2+b^2+c^2-\left(a^4+b^4+c^4\right)\)
\(A=10-50=-40\)
đặt 1/b =c
<=>
a^2 +c^2 =a^3 +c^3 (1)
a^2 +c^2 =a^4 +c^4 (2)
(1) <=> a^2 (1-a) =c^2 (c-1) (3)
(2) <=> a^2 (1-a^2) =c^2 (c^2 -1) <=> a^2 (1+a)(1-a) =c^2 (1+c)(c-1) ((4)
từ (3) và (4) =. 1+a =1+c => a=c
(2) trừ (1) <=> a^3 (a-1) +c^3 (c-1)=0
<=>(a^2-1)(a^2 -ac+c^2) =0
a^2 -ac+c^2 >0
=> a^2 =1
Thay vào (1) => a=1
kết luận
a =b=1
\(a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=1\Leftrightarrow0-2\left(ab+bc+ca\right)=1\Leftrightarrow ab+bc+ca=-\frac{1}{2}\)
\(M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=1^2-2\left[\left(ab+bc+ca\right)^2-2\left(ab^2c+abc^2+a^2bc\right)\right]\)
\(=1-2\left(\frac{1}{4}-2abc\left(a+b+c\right)\right)=1-\frac{1}{2}+4abc.0=\frac{1}{2}\)
HĐT không được phép quên \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)
************
\(\left\{{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2=14\end{matrix}\right.\)\(\Rightarrow\left(ab+bc+ac\right)=-7\)
\(\left\{{}\begin{matrix}a+b+c=0\\\left(ab+bc+ac\right)=-7\end{matrix}\right.\)\(\Rightarrow\left(ab+bc+ac\right)^2=\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2=7^2\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\right]\)
\(a^4+b^4+c^4=14^2-2.7^2=7^2\left(4-2\right)=2.7^2\)
a + b +c =0 => ( a +b + c)^2 =0 => a^2 +b^2 +c^2 + 2ab +2bc + 2ac = 0
=> 1 + 2(ab + bc +ac) = 0 => 2(ab +bc +ac) = -1 ==> ab + bc +ac = -1/2
( ab + bc+ac)^2 = 1/4 => a^2.b^2 + b^2.c^2 + c^2.a^2 + 2ab^2.c +2ab.c^2 + 2 a^2.b.c = 1/4
=> a^2 . b^2 + b^2 . c^2 + c^2 . a^2 + 2abc ( a+ b+ c) = 1/4
=> a^2 . b^2 + b^2 . c^2 + c^2 . a^2 + 2abc . 0 = 1/4
=> 2( a^2 . b^2 + + b^2 . c^2 + c^2 . a^2 ) = 2.1/4 = 1/2
=> 2a^2 . b^2 + 2 b^2 . c^2 + 2c^2 . a^2 = 1/2
( a^2 + b^2 + c^2 )^2 = 1
=> a^4 + b^4 + c^4 + 2a^2.b^2 + 2b^2.c^2 + 2 c^2 . a^2 = 1
=> a^4 + b^ 4 + c^4 + 1/2 = 1
=> a^4 + b^4 + c^4 = 1/2
(a+b+c)2 = 0
<=> a2 + b2 + c2 + 2ab + 2bc + 2ac = 0
<=> 2ab + 2bc + 2ac = -1
<=> ab + bc + ac = -1/2
<=> a2b2 + b2c2 + c2a2 + 2ab2c + 2abc2 + 2a2bc = 1/4
<=> a2b2 + b2c2 + c2a2 + 2abc(a+b+c) = 1/4
<=> a2b2 + b2c2 + c2a2 = 1/4
(a2 + b2 + c2)2 = 1
<=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2 = 1
<=> a4 + b4 + c4 + 2.1/4 = 1
<=> a4 + b4 + c4 = 1 - 1/2 = 1/2.
Vậy M = 1/2
a+ b + c = 0 => (a+ b+ c)2 = 0 => a2 + b2 + c2 + 2(ab + bc + ca) = 0 => ab + bc + ca = -1/2
Ta có: (ab + bc + ca)2 = a2b2 + c2.b2 + a2.c2 + 2abc.(a + b + c)
=> (-1/2)2 = a2b2 + c2.b2 + a2.c2 + 0 => a2b2 + c2.b2 + a2.c2 = 1/4
Ta có: (a2 + b2 + c2)2 = a4 + b4 + c4 + 2(a2b2 + c2.b2 + a2.c2) => 1 = M + 2. 1/4 => M = 1-1/2 = 1/2
Vậy M = 1/2
a = - (b + c)
<=> a2 = b2 + c2 + 2bc
<=> a2 - b2 - c2 = 2bc
<=> a4 + b4 + c4 + 2(b2 c2 - a2 b2 - a2 c2) = 4b2 c2
<=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2 = 1
<=> a4 + b4 + c4 = 0,5
trả lời rõ hơn đk k pn?