K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

HĐT không được phép quên \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)

************

\(\left\{{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2=14\end{matrix}\right.\)\(\Rightarrow\left(ab+bc+ac\right)=-7\)

\(\left\{{}\begin{matrix}a+b+c=0\\\left(ab+bc+ac\right)=-7\end{matrix}\right.\)\(\Rightarrow\left(ab+bc+ac\right)^2=\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2=7^2\)

\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\right]\)

\(a^4+b^4+c^4=14^2-2.7^2=7^2\left(4-2\right)=2.7^2\)

4 tháng 4 2017

cảm ơn, mình cũng đã biết một cách giải khác nữa rồi

3 tháng 12 2017

Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)

Vậy \(x=y=\frac{1}{2}\)

12 tháng 11 2016

a = - (b + c)

<=> a2 = b2 + c2 + 2bc

<=> a2 - b2 - c2 = 2bc

<=> a4 + b4 + c4 + 2(b2 c2 - a2 b2 - a2 c2) = 4b2 c2

<=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2 = 1

<=> a4 + b4 + c4 = 0,5

12 tháng 11 2016

trả lời rõ hơn đk k pn?