Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Này #Edogawa Conan, đây là chỗ học chứ không phải chỗ ddeerr đăng linh tinh đâu. Bạn ko nghe cô Thủy nói à? Lần 1 cảnh cáo, lần 2 khóa nick đó. Thế nên đừng có đăng mấy cái ko liên quan tới chủ đề.
a)\(S=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\)
Áp dụng BĐT cosi:
\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{ac}{ca}}=2\)
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\)
\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\)
=>S\(\ge\)6
Dấu = xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{c}{a}\\\dfrac{a}{b}=\dfrac{b}{a}\\\dfrac{c}{b}=\dfrac{b}{c}\end{matrix}\right.\)<=>a=b=c
b)S\(\ge\)6
=>GTNN của S=6 xảy ra khi a=b=c
Đề có bị sao không vậy? \(S\) không thể bằng \(2\) Sửa đề:
Chứng minh rằng \(S\ge6\)
Giải:
Ta có:
\(S=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a+c}{b}\)
\(=\left(\dfrac{a}{c}+\dfrac{b}{c}\right)+\left(\dfrac{b}{a}+\dfrac{c}{a}\right)+\left(\dfrac{a}{b}+\dfrac{c}{b}\right)\)
\(=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\)
\(\Rightarrow S\ge2+2+2=6\)
Vậy \(S\ge6\) (Đpcm)
\(\dfrac{a}{a+b}< \dfrac{a}{a+b+c}\)
\(\dfrac{b}{b+c}< \dfrac{b}{a+b+c}\)
\(\dfrac{c}{c+a}< \dfrac{c}{a+b+c}\)
\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+b+c}{a+b+c}=1\left(đpcm\right)\)
Vậy...
b, Ta có:
\(14A=\dfrac{7^{2013}+14}{7^{2013}+1}=\dfrac{7^{2013}+1+13}{7^{2013}+1}=\dfrac{7^{2013}+1}{7^{2013}+1}+\dfrac{13}{7^{2013}+1}=1+\dfrac{13}{7^{2013}+1}\)
\(14B=\dfrac{7^{2015}+14}{7^{2015}+1}=\dfrac{7^{2015}+1+13}{7^{2015}+1}=\dfrac{7^{2015}+1}{7^{2015}+1}+\dfrac{13}{7^{2015}+1}=1+\dfrac{13}{7^{2015}+1}\)
\(\)Vì \(7^{2013}+1< 7^{2015}+1\)
\(\dfrac{\Rightarrow13}{7^{2013}+1}>\dfrac{13}{7^{2015}+1}\)
\(\Rightarrow1+\dfrac{13}{7^{2013}+1}>1+\dfrac{13}{7^{2015+1}}\)
\(\Leftrightarrow14A>14B\)
\(\Rightarrow A>B\)
\(A=\dfrac{10}{a^m}+\dfrac{10}{a^n}\)
\(=\dfrac{10a^n+9a^m+a^m}{a^ma^n}\)
\(B=\dfrac{11}{a^m}+\dfrac{9}{a^n}\)
\(=\dfrac{10a^n+a^n+9a^m}{a^ma^n}\)
+ Nếu m > n thì am > an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}>\dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A > B
+ Nếu m < n thì am < an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}< \dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A < B
+ Nếu m = n thì am = an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}=\dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A = B