K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

mô đây , đi hc thêm à chớ bài thầy hải ko có hay BDHSG

15 tháng 3 2017

Này #Edogawa Conan, đây là chỗ học chứ không phải chỗ ddeerr đăng linh tinh đâu. Bạn ko nghe cô Thủy nói à? Lần 1 cảnh cáo, lần 2 khóa nick đó. Thế nên đừng có đăng mấy cái ko liên quan tới chủ đề.

7 tháng 5 2017

a)\(S=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\)

Áp dụng BĐT cosi:

\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{ac}{ca}}=2\)

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\)

\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\)

=>S\(\ge\)6

Dấu = xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{c}{a}\\\dfrac{a}{b}=\dfrac{b}{a}\\\dfrac{c}{b}=\dfrac{b}{c}\end{matrix}\right.\)<=>a=b=c

b)S\(\ge\)6

=>GTNN của S=6 xảy ra khi a=b=c

7 tháng 4 2017

Đề có bị sao không vậy? \(S\) không thể bằng \(2\) Sửa đề:

Chứng minh rằng \(S\ge6\)

Giải:

Ta có:

\(S=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a+c}{b}\)

\(=\left(\dfrac{a}{c}+\dfrac{b}{c}\right)+\left(\dfrac{b}{a}+\dfrac{c}{a}\right)+\left(\dfrac{a}{b}+\dfrac{c}{b}\right)\)

\(=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\)

\(\Rightarrow S\ge2+2+2=6\)

Vậy \(S\ge6\) (Đpcm)

7 tháng 4 2017

đề k bị sao bn ơi

26 tháng 4 2017

< 1

26 tháng 4 2017

\(\dfrac{a}{a+b}< \dfrac{a}{a+b+c}\)

\(\dfrac{b}{b+c}< \dfrac{b}{a+b+c}\)

\(\dfrac{c}{c+a}< \dfrac{c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+b+c}{a+b+c}=1\left(đpcm\right)\)

Vậy...

9 tháng 7 2017

b, Ta có:

\(14A=\dfrac{7^{2013}+14}{7^{2013}+1}=\dfrac{7^{2013}+1+13}{7^{2013}+1}=\dfrac{7^{2013}+1}{7^{2013}+1}+\dfrac{13}{7^{2013}+1}=1+\dfrac{13}{7^{2013}+1}\)

\(14B=\dfrac{7^{2015}+14}{7^{2015}+1}=\dfrac{7^{2015}+1+13}{7^{2015}+1}=\dfrac{7^{2015}+1}{7^{2015}+1}+\dfrac{13}{7^{2015}+1}=1+\dfrac{13}{7^{2015}+1}\)

\(\)\(7^{2013}+1< 7^{2015}+1\)

\(\dfrac{\Rightarrow13}{7^{2013}+1}>\dfrac{13}{7^{2015}+1}\)

\(\Rightarrow1+\dfrac{13}{7^{2013}+1}>1+\dfrac{13}{7^{2015+1}}\)

\(\Leftrightarrow14A>14B\)

\(\Rightarrow A>B\)

1 tháng 4 2018

\(A=\dfrac{10}{a^m}+\dfrac{10}{a^n}\)

\(=\dfrac{10a^n+9a^m+a^m}{a^ma^n}\)

\(B=\dfrac{11}{a^m}+\dfrac{9}{a^n}\)

\(=\dfrac{10a^n+a^n+9a^m}{a^ma^n}\)

+ Nếu m > n thì am > an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}>\dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A > B

+ Nếu m < n thì am < an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}< \dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A < B

+ Nếu m = n thì am = an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}=\dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A = B