K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

< 1

26 tháng 4 2017

\(\dfrac{a}{a+b}< \dfrac{a}{a+b+c}\)

\(\dfrac{b}{b+c}< \dfrac{b}{a+b+c}\)

\(\dfrac{c}{c+a}< \dfrac{c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+b+c}{a+b+c}=1\left(đpcm\right)\)

Vậy...

21 tháng 7 2017

Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu

a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b

b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)

Nhân vế với vế ta được :

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)

Dấu "="xảy ra tại a=b

21 tháng 7 2017

Bài 1.

Vì a, b, c, d \(\in\) N*, ta có:

\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)

\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)

\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)

\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)

Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.

Vậy M không có giá trị là số nguyên.

6 tháng 2 2018

a,\(\dfrac{3}{-4}\) \(\Rightarrow\dfrac{3.\left(-1\right)}{-4.\left(-1\right)}=\dfrac{-3}{4}\)

b,\(\dfrac{-1}{-5}\)\(\Rightarrow\dfrac{-1.\left(-1\right)}{-5.\left(-1\right)}=\dfrac{1}{5}\)

23 tháng 6 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)

Ta có:

Nếu:

\(\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\Leftrightarrow\left(2a+c\right)\left(b-d\right)=\left(a-c\right)\left(2b+d\right)\)

\(\Leftrightarrow2a\left(b-d\right)+c\left(b-d\right)=a\left(2b+d\right)-c\left(2b+d\right)\)

\(\Leftrightarrow2ab-2ad+bc-cd=2ab+ad-2bc+cd\)

\(\Leftrightarrow ad=bc\)

\(\Leftrightarrow\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\left(đpcm\right)\)

a: \(VT=\dfrac{1}{a+1}+\dfrac{1}{a}-\dfrac{1}{a+1}=\dfrac{1}{a}\)=VP

b: \(VP=\dfrac{a+1-a}{a\left(a+1\right)}=\dfrac{1}{a\left(a+1\right)}=VP\)

3 tháng 3 2018

bài 2 câu c

4C =1-1/45=44/45suy ra C=11/45

3 tháng 3 2018

Bài 1:

a)\(\dfrac{10^8+1}{10^9+1}\)\(\dfrac{10^9+1}{10^{10}+1}\)

b)\(\dfrac{5^{12}+1}{5^{13}+1}\)\(\dfrac{5^{11}+1}{5^{12}+1}\)

20 tháng 3 2018

Đề bài :

a) dãy các phân số trên có phải theo quy luật ko ?

b) tính tổng các phân số của dãy trên

1) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1-\dfrac{1}{50}\)

\(=\dfrac{49}{50}\)

2) \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{37.39}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{37}-\dfrac{1}{39}\)

\(=\dfrac{1}{3}-\dfrac{1}{39}\)

\(=\dfrac{13}{39}-\dfrac{1}{39}=\dfrac{12}{39}=\dfrac{4}{13}\)

3) \(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{73.76}\)

\(=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{73}-\dfrac{1}{76}\)

\(=\dfrac{1}{4}-\dfrac{1}{76}\)

\(=\dfrac{19}{76}-\dfrac{1}{76}=\dfrac{18}{76}=\dfrac{9}{38}\)

20 tháng 3 2018

1)

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =1-\dfrac{1}{50}\\ =\dfrac{49}{50}\)

2)

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{37.39}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\\ =\dfrac{1}{3}-\dfrac{1}{39}\\ =\dfrac{13}{39}-\dfrac{1}{39}\\ =\dfrac{12}{39}=\dfrac{4}{13}\)

3) \(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{73.76}\\ =\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{73}-\dfrac{1}{79}\\ =\dfrac{1}{4}-\dfrac{1}{79}\\ =\dfrac{75}{316}\)

14 tháng 4 2017

sao lúc nào cũng lên hỏi

14 tháng 4 2017

Vai trò a,b,c như nhau giả sử a < b < c

Mà a, b, c là các số nguyên tố khác nhau đôi một

=> \(a\ge2\), \(b\ge3\), \(c\ge5\)

=> \(\left\{{}\begin{matrix}\dfrac{1}{\left[a,b\right]}=\dfrac{1}{ab}\le\dfrac{1}{2.3}\le\dfrac{1}{6}\\\dfrac{1}{\left[b,c\right]}=\dfrac{1}{bc}\le\dfrac{1}{3.5}\le\dfrac{1}{15}\\\dfrac{1}{\left[c,a\right]}=\dfrac{1}{ac}\le\dfrac{1}{2.5}\le\dfrac{1}{10}\end{matrix}\right.\)

=> \(\dfrac{1}{\left[a,b\right]}+\dfrac{1}{\left[b,c\right]}+\dfrac{1}{\left[c,a\right]}\le\dfrac{1}{6}+\dfrac{1}{15}+\dfrac{1}{10}\)

=> \(\dfrac{1}{\left[a,b\right]}+\dfrac{1}{\left[b,c\right]}+\dfrac{1}{\left[c,a\right]}\le\dfrac{1}{3}\)

=> đpcm