K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

Ta có : \(10.A=\frac{10^{2017}+10}{10^{2017}+1}=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)

\(10.B=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}+\frac{9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)

Vì \(1=1\)và \(\frac{9}{10^{2017}+1}>\frac{9}{10^{2018}+1}\)nên \(1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)hay \(A>B\)

Vậy \(A>B\)

11 tháng 5 2017

a hơn b

a hơn b

a hơn b 

chúc học giỏi

8 tháng 8 2018

Có \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2\)(BĐT Bunhiacopxki)

\(=\left(1+1+1\right)^2=9\)

Vậy \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>1\)

Vậy bài toán ko giải đc; Nếu mk làm sai thì thứ lỗi vì mk năm nay mới lên lớp 8

NV
12 tháng 10 2020

\(S=\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\)

\(S=\frac{a^2}{a^2+2ab}+\frac{b^2}{b^2+2bc}+\frac{c^2}{c^2+2ca}\)

\(S\ge\frac{\left(a+b+c\right)^2}{a^2+2ab+b^2+2bc+c^2+2ca}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

\(S_{min}=1\) khi \(a=b=c=1\)

GTNN của S hoàn toàn không cần đến điều kiện \(abc=1\), nó luôn bằng 1 với mọi số thực dương a;b;c (nên điều kiện \(abc=1\) là thừa)

NV
12 tháng 10 2020

Do \(x^{2016}+y^{2016}+z^{2016}=1\Rightarrow\left\{{}\begin{matrix}0\le x^{2016}\le1\\0\le y^{2016}\le1\\0\le z^{2016}\le1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^{2017}\le x^{2016}\\y^{2017}\le y^{2016}\\z^{2017}\le z^{2016}\end{matrix}\right.\)

\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le x^{2016}+y^{2016}+z^{2016}\)

\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le1\)

Đẳng thức xảy ra khi vả chỉ khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị

\(\Rightarrow P=1\)

Gọi \(d=ƯC\left(m^2+n^2;m+n\right)\)

\(\Rightarrow\left(m+n\right)^2-\left(m^2+n^2\right)⋮d\Rightarrow2mn⋮d\)

TH1: \(2⋮d\Rightarrow d_{max}=2\) khi \(m;n\) cùng lẻ

TH2: \(m⋮d\) , mà \(m+n⋮d\Rightarrow n⋮d\)

\(\Rightarrow d=ƯC\left(m;n\right)\Rightarrow d=1\)

Th3: \(n⋮d\) tương tự như trên ta có \(d=1\)

Vậy ước chung lớn nhất A; B bằng 2 khi m; n cùng lẻ

18 tháng 5 2019

bài khó à nha

23 tháng 11 2016

Từ giả thiết ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x+y=0\) hoặc \(y+z=0\) hoặc \(z+x=0\)

+) Nếu x + y = 0 hoặc z + x = 0 thì ta không tính được giá trị biểu thức.

+) Nếu y + z = 0 thì \(y=-z\Leftrightarrow y^{2017}=-z^{2017}\Leftrightarrow y^{2017}+z^{2017}=0\)

Suy ra \(\left(x^{2016}+y^{2016}\right)\left(y^{2017}+z^{2017}\right)\left(x^{2018}+z^{2018}\right)=0\)

21 tháng 11 2016

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow x+y=0\) hoặc \(y+z=0\) hoặc \(z+x=0\)

Tới đây bạn tự làm được rồi ^^

21 tháng 11 2016

thank you

17 tháng 7 2016

fghgffh

17 tháng 7 2016

Ta thành lập một biểu thức có dạng như sau:

\(\left(a^{2015}+b^{2015}\right)\left(a+b\right)-\left(a^{2014}+b^{2014}\right)ab=a^{2016}+b^{2016}\)  \(\left(1\right)\)

Mà  \(a^{2014}+b^{2014}=a^{2015}+b^{2015}=a^{2016}+b^{2016}\)  (theo gt)

nên từ  \(\left(1\right)\)  suy ra  \(\left(a^{2016}+b^{2016}\right)\left(a+b\right)-\left(a^{2016}+b^{2016}\right)ab=a^{2016}+b^{2016}\)

\(\Leftrightarrow\)  \(\left(a^{2016}+b^{2016}\right)\left(a+b-ab\right)=a^{2016}+b^{2016}\)

\(\Leftrightarrow\)  \(a+b-ab=1\)  (do   \(a^{2016}+b^{2016}\ne0\))

\(\Leftrightarrow\) \(\left(1-a\right)\left(b-1\right)=0\)

\(\Leftrightarrow\)  \(\orbr{\begin{cases}1-a=0\\b-1=0\end{cases}}\)  \(\Leftrightarrow\)  \(\orbr{\begin{cases}a=1\\b=1\end{cases}}\)

Với  \(a=1\)  thì ta dễ dàng suy ra  \(b=1\)

Tương tự với  \(b=1\)

Vậy,  \(\left(x,y\right)=\left(1,1\right)\)

25 tháng 4 2018

Lời giải với kiến thức lớp 8:

\(a^{2017}+b^{2017}\le a^{2018}+b^{2018}\)

\(\Leftrightarrow a^{2017}\left(a-1\right)+b^{2017}\left(b-1\right)\ge0\)

\(\Leftrightarrow a^{2017}\left(a-\frac{a+b}{2}\right)+b^{2017}\left(b-\frac{a+b}{2}\right)\ge0\)

\(\Leftrightarrow a^{2017}\cdot\frac{a-b}{2}+b^{2017}\cdot\frac{b-a}{2}\ge0\)

\(\Leftrightarrow\left(a^{2017}-b^{2017}\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^{2016}+a^{2015}b+a^{2014}b^2+...+b^{2016}\right)\ge0\)

Bất đẳng thức cuối đúng với mọi a, b. Do đó bất đẳng thức đã cho là đúng.

AH
Akai Haruma
Giáo viên
22 tháng 7 2020

Lời giải:

$a^{2014}+b^{2014}=a^{2015}+b^{2015}$

$\Leftrightarrow a^{2014}(a-1)+b^{2014}(b-1)=0(1)$

$a^{2015}+b^{2015}=a^{2016}+b^{2016}$

$\Leftrightarrow a^{2015}(a-1)+b^{2015}(b-1)=0(2)$

Lấy $(2)-(1)$ theo vế thu được: $a^{2014}(a-1)^2+b^{2014}(b-1)^2=0$

Ta thấy $a^{2014}(a-1)^2\geq 0; b^{2014}(b-1)^2\geq 0$ nên để tổng của chúng bằng $0$ thì:

$a^{2014}(a-1)^2=b^{2014}(b-1)^2=0$

Mà $a,b>0$ nên $a=b=1$

Do đó $S=2$