K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

4

13 tháng 9 2017

  tana = sina/cosa = 2 => sina = 2cosa 
Thay sina = 2cosa vào biểu thức, ta có: 
(sina + cosa)/(sina - cosa) = (2cosa + cosa)/(2cosa - cosa) = 3cosa/cosa = 3 
Kết luận: (sina + cosa)/(sina - cosa) = 3

P/s: Bài này tui làm rồi

13 tháng 9 2017

Ai biết làm thì trả lời hộ mình với, cảm ơn rất nhiều ! Xin lỗi vì viết câu trả lời không liên quan, thật lòng xin lỗi !

11 tháng 6 2021

a) Có: `1+tan^2a=1/(cos^2a)`

`<=> 1+(3/5)^2=1/(cos^2a)`

`=> cosa=\sqrt10/4`

`=> sina = \sqrt(1-cos^2a) = \sqrt6/4`

b) Có: `sin^2a + cos^2a=1`

`<=> sin^2a + (1/4)^2=1`

`=> sina=\sqrt15/4`

`=> tana = (sina)/(cosa) = \sqrt15`

 

11 tháng 6 2021

Má ơi,tính sai:

a)\(\left[{}\begin{matrix}cos\alpha=\dfrac{5\sqrt{34}}{34}\\cos\alpha=\dfrac{-5\sqrt{34}}{34}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}sin\alpha=cos\alpha.tan\alpha=\dfrac{3\sqrt{34}}{34}\\sin\alpha=cos\alpha.tan\alpha=\dfrac{-3\sqrt{34}}{34}\end{matrix}\right.\)

b)\(\left[{}\begin{matrix}sin\alpha=\dfrac{\sqrt{15}}{4}\\sin\alpha=\dfrac{-\sqrt{15}}{4}\end{matrix}\right.\)\(\left[{}\begin{matrix}tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\sqrt{15}\\tatn\alpha=-\sqrt{15}\end{matrix}\right.\)

a: \(\sin^2a+\cos^2a=1\)

\(\Leftrightarrow\cos^2a=1-\sin^2a=\left(1-\sin a\right)\left(1+\sin a\right)\)

hay \(\dfrac{\cos a}{1-\sin a}=\dfrac{1+\sin a}{\cos a}\)

b: \(VT=\dfrac{\left(\sin a+\cos a+\sin a-\cos a\right)\left(\sin a+\cos a-\sin a+\cos a\right)}{\sin a\cdot\cos a}\)

\(=\dfrac{2\cdot\cos a\cdot2\sin a}{\sin a\cdot\cos a}=4\)

18 tháng 8 2017

a) Áp dụng hệ thức:

\(sin^2\alpha+cos^2\alpha=1\)

<=>\(sin^2\alpha+\left(\dfrac{5}{13}\right)^2=1\)

<=>\(sin^2\alpha+\dfrac{25}{169}=1\)

<=>\(sin^2\alpha=1-\dfrac{25}{169}=\dfrac{144}{169}\)

<=>\(sin\alpha=\sqrt{\dfrac{144}{169}}=\dfrac{12}{13}\)

Ta có: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{12}{13}}{\dfrac{5}{13}}=\dfrac{12}{13}.\dfrac{13}{5}=\dfrac{12}{5}\)

15 tháng 10 2015

\(\tan\alpha=\frac{3}{2}\Rightarrow\frac{\sin\alpha}{\cos\alpha}=\frac{3}{2}\Rightarrow\sin\alpha=\frac{3}{2}\cos\alpha\)

\(\text{Suy ra: }\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}=\frac{\cos\alpha+\frac{3}{2}\cos\alpha}{\cos\alpha-\frac{3}{2}\cos\alpha}=\frac{\frac{5}{2}\cos\alpha}{-\frac{1}{2}\cos\alpha}=-5\)

13 tháng 10 2017

\(\dfrac{sina+cosa}{sina-cosa}=3=>sina+cosa=3sina-3cosa\)

\(=>2sina=4cosa=>sina=2cosa\)

\(=>tana=\dfrac{sina}{cosa}=\dfrac{2cosa}{cosa}=2\)

13 tháng 10 2017

thanks ^^

11 tháng 10 2020

Có \(\sin^2a+\cos^2a=1\)\(\Leftrightarrow\sin^2a=1-\cos^2a=1-\left(\frac{1}{3}\right)^2=\frac{8}{9}\)

\(\Leftrightarrow\sin a=\frac{\sqrt{8}}{3}\)

Xét  \(B=\frac{\sin a-3\cos a}{\sin a+2\cos a}=\frac{\frac{\sqrt{8}}{3}-3\cdot\frac{1}{3}}{\frac{\sqrt{8}}{3}+2\cdot\frac{1}{3}}=\frac{7-5\sqrt{2}}{2}\)

3 tháng 7 2016

1. Ta có \(\frac{cosa+sina}{cosa-sina}=\frac{1+\frac{sina}{cosa}}{1-\frac{sina}{cosa}}=\frac{1+0,5}{1-0,5}=3.\)

2. Giả sử MN = 3a, MP = 4a, khi đó ta có: \(\frac{1}{9a^2}+\frac{1}{16a^2}=\frac{1}{12^2}\Rightarrow a=5\Rightarrow\hept{\begin{cases}MN=15\\MP=20\end{cases}}\)

Áp dụng hệ thức lượng trong tam giác vuông, ta có: \(NP=\sqrt{MN^2+MP^2}=25\left(cm\right)\)