\(^2\)-2m +4) (m+2)- m\(^3\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2022

 P = (m2 - 2m +4)(m+2) - m3 + (m+3)(m-3) - m2 - 18

 P = m3 + 8 - m3 +  m2 - 9 - m2 - 18 

P = -19

vậy P không phụ thuộc vào m (đpcm)

11 tháng 10 2022

ai làm được mk tick cho

a) Bpt <=> \(\frac{m-2}{4}+\frac{3m+1}{3}< 0\)

\(\Leftrightarrow3\left(m-2\right)+4\left(3m+1\right)< 0\)

\(\Leftrightarrow3m-6+12m+4< 0\)

\(\Leftrightarrow3m+12m-2< 0\)

\(\Leftrightarrow15m-2< 0\)

\(\Leftrightarrow15m< 2\)

\(\Leftrightarrow m< \frac{2}{15}\)

Vậy để bt đạt giá trị âm thì m < 2/15 

9 tháng 4 2018

làm hộ mink câu cuối đi

9 tháng 4 2018

\(a)\) Ta có : 

\(\frac{m-2}{4}+\frac{3m+1}{3}< 0\)

\(\Leftrightarrow\)\(\frac{3m-6+12m+4}{12}< 0\) ( quy đồng ) 

\(\Leftrightarrow\)\(3m-6+12m+4< 0\)

\(\Leftrightarrow\)\(\left(12m+3m\right)+\left(4-6\right)< 0\)

\(\Leftrightarrow\)\(15m-2< 0\)

\(\Leftrightarrow\)\(15m< 2\)

\(\Leftrightarrow\)\(m< \frac{2}{15}\)

Vậy để \(\frac{m-2}{4}+\frac{3m+1}{3}\) có giá trị âm thì \(m< \frac{2}{15}\)

Chúc bạn học tốt ~ 

9 tháng 4 2018

\(b)\) Ta có : 

\(\frac{m-4}{6m+9}>0\)

\(\Leftrightarrow\)\(m-4>0\) ( nhân hai vế cho \(6m+9\) ) 

\(\Leftrightarrow\)\(m>4\)

Vậy để \(\frac{m-4}{6m+9}\) có giá trị dương thì \(m>4\)

Chúc bạn học tốt ~ 

4 tháng 5 2017

bài 1:

a) 4n+4+3n-6<19

<=> 7n-2<19

<=> 7n<21 <=> n< 3

b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43

-6n+25\(\leq\)43

-6n\(\leq\)18

n\(\geq\)-3

19 tháng 7 2017

bài 1 ở chỗ nào vậy

Bài làm :

\(x.\left(2x^3+x+2\right)-2x^2.\left(x^2+1\right)+x^2-2x+1\)

\(=2x^4+x^2+2x-2x^4-2x^2+x^2-2x+1\)

\(=\left(2x^4-2x^4\right)+\left(x^2-2x^2+x^2\right)+\left(2x-2x\right)+1\)

\(=1\)

Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến x .

Học tốt

31 tháng 12 2022

a: DKXĐ: x<>1; x<>-1

b: \(A=\dfrac{x^2+2x+1+6-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(=\dfrac{x^2+2x+7-x^2+x-3x+3}{1}\cdot\dfrac{2}{5}=10\cdot\dfrac{2}{5}=4\)

3 tháng 11 2017

a) \(x\ne2;-2;-4\)

b) và c) thì bạn rút gọn M rồi tính

4 tháng 11 2017

cách nhân ntn ạ 

17 tháng 8 2020

Bài làm:

a) đkxđ: \(x\ne\pm1\)

Ta có:

\(M=\frac{x+1}{x^2-1}-\frac{x^2+2}{x^3-1}-\frac{x+1}{x^2+x+1}\)

\(M=\frac{1}{x-1}-\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x+1}{x^2+x+1}\)

\(M=\frac{x^2+x+1-x^2-2-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(M=\frac{x-1-x^2+1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(M=\frac{x\left(1-x\right)}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{x}{x^2+x+1}\)

b) Mà x khác 1

=> x = -2, khi đó:

\(M=-\frac{-2}{4-2+1}=\frac{2}{3}\)

29 tháng 3 2020

Bài 1 :

Ta có : \(\frac{x^2+x+1}{x^2+1}=0\)

=> \(\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{x^2+1}=0\)

Ta thấy \(\left\{{}\begin{matrix}\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\\x^2+1>0\end{matrix}\right.\)

=> \(\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{x^2+1}>0\)

Vậy phương trình vô nghiệm .

Bài 3 :

a, ĐKXĐ : \(\left\{{}\begin{matrix}m-2\ne0\\m\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}m\ne2\\m\ne0\end{matrix}\right.\)

Ta có : \(A=\frac{m+1}{m-2}-\frac{1}{m}\)

=> \(A=\frac{\left(m+1\right)m}{\left(m-2\right)m}-\frac{m-2}{m\left(m-2\right)}\)

=> \(A=\frac{m^2+m-m+2}{\left(m-2\right)m}=\frac{m^2+2}{m\left(m-2\right)}\)

Ta có : \(B=\frac{m+2}{m-2}+\frac{1}{m}\)

=> \(B=\frac{\left(m+2\right)m}{\left(m-2\right)m}+\frac{m-2}{m\left(m-2\right)}\)

=> \(B=\frac{m^2+2m+m-2}{\left(m-2\right)m}=\frac{m^2+3m-2}{m\left(m-2\right)}\)

c, Thay A = 1 ta được phương trình :\(\frac{m^2+2}{m\left(m-2\right)}=1\)

=> \(m^2+2=m\left(m-2\right)\)

=> \(-2m=2\)

=> \(m=-1\) ( TM )

Vậy m có giá trị bằng 1 khi A = 1 .

b, - Để A = B thì : \(\frac{m^2+2}{m\left(m-2\right)}=\frac{m^2+3m-2}{m\left(m-2\right)}\)

=> \(m^2+2=m^2+3m-2\)

=> \(3m=4\)

=> \(m=\frac{4}{3}\)

Vậy với A = B thì m có giá trị là 4/3 .

d, Ta có : A + B = 0 .

=> \(\frac{m^2+2}{m\left(m-2\right)}+\frac{m^2+3m-2}{m\left(m-2\right)}=0\)

=> \(2m^2+3m=0\)

=> \(m\left(2m+3\right)\)=0

=> \(\left[{}\begin{matrix}m=0\\m=-\frac{3}{2}\end{matrix}\right.\)

Vậy m = 0 hoăc m = -3/2 khi A + B = 0 .

29 tháng 3 2020

Hack não