\(\frac{x^{2^{ }}+x+1}{x^{2^{ }}+1}\)=0

2. Giải...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

Bài 1 :

Ta có : \(\frac{x^2+x+1}{x^2+1}=0\)

=> \(\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{x^2+1}=0\)

Ta thấy \(\left\{{}\begin{matrix}\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\\x^2+1>0\end{matrix}\right.\)

=> \(\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{x^2+1}>0\)

Vậy phương trình vô nghiệm .

Bài 3 :

a, ĐKXĐ : \(\left\{{}\begin{matrix}m-2\ne0\\m\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}m\ne2\\m\ne0\end{matrix}\right.\)

Ta có : \(A=\frac{m+1}{m-2}-\frac{1}{m}\)

=> \(A=\frac{\left(m+1\right)m}{\left(m-2\right)m}-\frac{m-2}{m\left(m-2\right)}\)

=> \(A=\frac{m^2+m-m+2}{\left(m-2\right)m}=\frac{m^2+2}{m\left(m-2\right)}\)

Ta có : \(B=\frac{m+2}{m-2}+\frac{1}{m}\)

=> \(B=\frac{\left(m+2\right)m}{\left(m-2\right)m}+\frac{m-2}{m\left(m-2\right)}\)

=> \(B=\frac{m^2+2m+m-2}{\left(m-2\right)m}=\frac{m^2+3m-2}{m\left(m-2\right)}\)

c, Thay A = 1 ta được phương trình :\(\frac{m^2+2}{m\left(m-2\right)}=1\)

=> \(m^2+2=m\left(m-2\right)\)

=> \(-2m=2\)

=> \(m=-1\) ( TM )

Vậy m có giá trị bằng 1 khi A = 1 .

b, - Để A = B thì : \(\frac{m^2+2}{m\left(m-2\right)}=\frac{m^2+3m-2}{m\left(m-2\right)}\)

=> \(m^2+2=m^2+3m-2\)

=> \(3m=4\)

=> \(m=\frac{4}{3}\)

Vậy với A = B thì m có giá trị là 4/3 .

d, Ta có : A + B = 0 .

=> \(\frac{m^2+2}{m\left(m-2\right)}+\frac{m^2+3m-2}{m\left(m-2\right)}=0\)

=> \(2m^2+3m=0\)

=> \(m\left(2m+3\right)\)=0

=> \(\left[{}\begin{matrix}m=0\\m=-\frac{3}{2}\end{matrix}\right.\)

Vậy m = 0 hoăc m = -3/2 khi A + B = 0 .

29 tháng 3 2020

Hack não

a)Ta có : \(4x^2=1\)

\(\Rightarrow\orbr{\begin{cases}2x=1\\2x=-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

mà \(x\ne-\frac{1}{2}\Rightarrow x=\frac{1}{2}\)

Thay \(x=\frac{1}{2}\)vào B , ta được:

\(B=\frac{\left(\frac{1}{2}\right)^2-\frac{1}{2}}{2.\frac{1}{2}+1}=\frac{\frac{1}{4}-\frac{1}{2}}{1+1}=\frac{-\frac{1}{4}}{2}=-\frac{1}{8}\)

Vậy \(B=-\frac{1}{8}\)khi \(4x^2=1\)

b)Ta có : \(A=\frac{1}{x-1}-\frac{x}{1-x^2}\)

\(=\frac{1}{x-1}+\frac{x}{x^2-1}\)

\(=\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow M=A.B=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x^2-x}{2x+1}\)

\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x\left(x-1\right)}{2x+1}\)

\(=\frac{x}{x+1}\)

Vậy \(M=\frac{x}{x+1}\)

c)Ta có: \(x< x+1\forall x\)

\(\Rightarrow M=\frac{x}{x+1}< \frac{x+1}{x+1}=1\forall x\ne-1\)

Vậy với mọi \(x\ne-1\)thì \(M< 1\)

24 tháng 3 2020

a) thay x = -3 vào biểu thức, ta có: 

\(A=\frac{\left(-3\right)^2+2.\left(-3\right)}{\left(-3\right)+1}=-\frac{3}{2}\)

b) M = A.B

\(M=\left(-\frac{3}{2}\right)\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)\)

\(M=-\frac{3\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)}{2}\)

\(M=-\frac{3.\frac{8}{x+2}}{2}\)

\(M=-\frac{\frac{24}{x+2}}{2}\)

\(M=-\frac{24}{2\left(x+2\right)}\)

\(M=-\frac{12}{x+2}\)

28 tháng 12 2020

a, Ta có : \(A=\frac{1}{x+2}-\frac{2x}{4-x^2}+\frac{3}{x-2}\)

\(=\frac{1}{x+2}-\frac{2x}{\left(2-x\right)\left(x+2\right)}+\frac{3}{x-2}\)

\(=\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x-2+2x+3x+6}{\left(x-2\right)\left(x+2\right)}=\frac{6x+4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra : \(M=\frac{6x+4}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{3x+2}\)

\(=\frac{2\left(3x+2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(3x+2\right)}=\frac{2}{x-2}\)

3 tháng 11 2017

a) \(x\ne2;-2;-4\)

b) và c) thì bạn rút gọn M rồi tính

4 tháng 11 2017

cách nhân ntn ạ