Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(\frac{m-2}{4}+\frac{3m+1}{3}< 0\)
\(\Leftrightarrow\)\(\frac{3m-6+12m+4}{12}< 0\) ( quy đồng )
\(\Leftrightarrow\)\(3m-6+12m+4< 0\)
\(\Leftrightarrow\)\(\left(12m+3m\right)+\left(4-6\right)< 0\)
\(\Leftrightarrow\)\(15m-2< 0\)
\(\Leftrightarrow\)\(15m< 2\)
\(\Leftrightarrow\)\(m< \frac{2}{15}\)
Vậy để \(\frac{m-2}{4}+\frac{3m+1}{3}\) có giá trị âm thì \(m< \frac{2}{15}\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(\frac{m-4}{6m+9}>0\)
\(\Leftrightarrow\)\(m-4>0\) ( nhân hai vế cho \(6m+9\) )
\(\Leftrightarrow\)\(m>4\)
Vậy để \(\frac{m-4}{6m+9}\) có giá trị dương thì \(m>4\)
Chúc bạn học tốt ~
a) \(x-3=2m+4\)
\(\Leftrightarrow x=2m+4+3\)
\(\Leftrightarrow x=2m+7\)
Phương trình có nghiệm dương khi \(2m+7>0\Leftrightarrow m>-\dfrac{7}{2}\)
b) \(2x-5=m+8\)
\(\Leftrightarrow2x=m+8+5\)
\(\Leftrightarrow2x=m+13\)
\(\Leftrightarrow x=\dfrac{m+13}{2}\)
Phương trình có nghiệm âm khi: \(\dfrac{m+13}{2}< 0\Leftrightarrow m< -13\)
c) \(x-2=3m+4\)
\(\Leftrightarrow x=3m+4+2\)
\(\Leftrightarrow x=3m+6\)
Phương trình có nghiệm lớn hơn 3 khi: \(3m+6>3\Leftrightarrow m>-1\)
Quy đồng :
\(A=\frac{2m-3}{2m+3}+\frac{2m+3}{2m-3}\)Đ k : \(\hept{\begin{cases}m\ne\frac{-3}{2}\\m\ne\frac{3}{2}\end{cases}}\)
\(=\frac{\left(2m-3\right)^2+\left(2m+3\right)^2}{\left(2m+3\right)\left(2m-3\right)}\)
\(=\frac{\left(2m-3\right)^2+\left(2m+3\right)^2}{4m^2-9}=P\)
Để A có giá trị âm thì : \(4m^2-9< 0\Rightarrow\left(2m-3\right)\left(2m+3\right)< 0\)
Th1 : \(\hept{\begin{cases}2m-3< 0\\2m+3>0\end{cases}}\Rightarrow\hept{\begin{cases}m< \frac{3}{2}\\m>\frac{-3}{2}\end{cases}}\)
Th2 : \(\hept{\begin{cases}2m-3>0\\2m+3< 0\end{cases}\Rightarrow\hept{\begin{cases}m>\frac{3}{2}\\m< \frac{-3}{2}\end{cases}}}\)
Này bạn, các trường hợp như vậy thì phải dùng dấu \(\Leftrightarrow\)nha bạn không là sai
Thay x=1 và A=0 vào biểu thức, ta được:
\(\dfrac{3}{2m+1}+\dfrac{5}{2m-1}=0\)
=>6m-3+10m+5=0
=>16m+2=0
hay m=-1/8
\(\frac{-m+1}{m+8}+\frac{m-1}{m+3}\)( ĐKXĐ : \(x\ne-8;x\ne-3\))
\(=\frac{\left(-m+1\right)\left(m+3\right)}{\left(m+8\right)\left(m+3\right)}+\frac{\left(m-1\right)\left(m+8\right)}{\left(m+8\right)\left(m+3\right)}\)
\(=\frac{-m^2-2m+3}{\left(m+8\right)\left(m+3\right)}+\frac{m^2+7m-8}{\left(m+8\right)\left(m+3\right)}\)
\(=\frac{-m^2-2m+3+m^2+7m-8}{\left(m+8\right)\left(m+3\right)}\)
\(=\frac{5m-5}{\left(m+8\right)\left(m+3\right)}\)
Để biểu thức dương ( tức > 0 ) ta xét hai trường hợp sau :
I) \(\hept{\begin{cases}5m-5>0\\\left(m+8\right)\left(m+3\right)>0\end{cases}}\)
+) 5m - 5 > 0 => 5m > 5 => m > 1 (1)
+) ( m + 8 )( m + 3 ) > 0
1. \(\hept{\begin{cases}m+8>0\\m+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-8\\m>-3\end{cases}}\Leftrightarrow m>-3\)(2)
2. \(\hept{\begin{cases}m+8< 0\\m+3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -8\\m< -3\end{cases}}\Leftrightarrow m< -8\)(3)
Từ (1) , (2) và (3) => m > 1
II) \(\hept{\begin{cases}5m-5< 0\\\left(m+8\right)\left(m+3\right)< 0\end{cases}}\)
+) 5m - 5 < 0 => 5m < 5 => m < 1 (4)
+) ( m + 8 )( m + 3 ) < 0
1. \(\hept{\begin{cases}m+8< 0\\m+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -8\\m>-3\end{cases}}\)( loại )
2. \(\hept{\begin{cases}m+8>0\\m+3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-8\\m< -3\end{cases}}\Leftrightarrow-8< m< -3\)(5)
Từ (4) và (5) => -8 < m < -3
Từ I) và 2)
=> Với m > 1 hoặc -8 < m < -3 thì biểu thức có giá trị dương
\(\frac{\left(m+1\right)\left(m-5\right)}{2}\)có giá trị âm
=> ( m + 1 )( m - 5 ) < 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}m+1< 0\\m-5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -1\\m>5\end{cases}}\)( loại )
2. \(\hept{\begin{cases}m+1>0\\m-5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-1\\m< 5\end{cases}}\Leftrightarrow-1< m< 5\)
Vậy với -1 < m < 5 thì biểu thức có giá trị âm
Bài làm:
a) Ta có: \(\frac{-m+1}{m+8}+\frac{m-1}{m+3}\) \(\left(m\ne\left\{-8;-3\right\}\right)\)
\(=\frac{\left(1-m\right)\left(m+3\right)+\left(m-1\right)\left(m+8\right)}{\left(m+8\right)\left(m+3\right)}\)
\(=\frac{\left(m-1\right)\left(m+8-m-3\right)}{\left(m+8\right)\left(m+3\right)}\)
\(=\frac{5\left(m-1\right)}{\left(m+8\right)\left(m+3\right)}\)
Để BT có giá trị dương thì ta xét 2 TH sau:
+ Nếu: \(\hept{\begin{cases}5\left(m-1\right)>0\\\left(m+8\right)\left(m+3\right)>0\end{cases}}\Rightarrow m>1\)
+ Nếu: \(\hept{\begin{cases}5\left(m-1\right)< 0\\\left(m+8\right)\left(m+3\right)< 0\end{cases}}\Rightarrow-8< m< -3\)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Ta có :
\(A=\frac{5}{2m+1}\) và \(B=\frac{4}{2m-1}\) \(\left(ĐKXĐ:\ne\pm\frac{1}{2}\right)\)
a ) \(2A+3B=0\Rightarrow2.\frac{5}{2m+1}+3.\frac{4}{2m-1}=0\)
\(\Leftrightarrow\frac{10}{2m+1}+\frac{12}{2m-1}=0\Leftrightarrow\frac{10.\left(2m-1\right)}{\left(2m+1\right)\left(2m-1\right)}=0\)
\(\Leftrightarrow10\left(2m-1\right)+12\left(2m+1\right)=0\)
\(\Leftrightarrow20m-10+24m+12=0\)
\(\Leftrightarrow44m+2=0\)
\(\Leftrightarrow m=-\frac{1}{22}\left(t/m\right)\)
Vậy \(m=-\frac{1}{22}\) thì \(2A+3B=0\)
Chúc bạn học tốt !!!
Ta có x – 3 = 2m + 4
⇔ x = 2m + 4 + 3
⇔ x = 2m + 7
Phương trình có nghiệm số dương khi 2m + 7 > 0 ⇔ m > - 7/2
a) Bpt <=> \(\frac{m-2}{4}+\frac{3m+1}{3}< 0\)
\(\Leftrightarrow3\left(m-2\right)+4\left(3m+1\right)< 0\)
\(\Leftrightarrow3m-6+12m+4< 0\)
\(\Leftrightarrow3m+12m-2< 0\)
\(\Leftrightarrow15m-2< 0\)
\(\Leftrightarrow15m< 2\)
\(\Leftrightarrow m< \frac{2}{15}\)
Vậy để bt đạt giá trị âm thì m < 2/15
làm hộ mink câu cuối đi