Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét : n^5-n = n.(n^4-1)=n.(n^2-1).(n^2+1) = n.(n-1).(n+1).(n^2-4+5) = n.(n-1).(n+1).(n-2).(n+2) + 5.(n-1).n(n+1)
Ta thấy n-2;n-1;n-n+1;n+2 là 5 số nguyên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 5
=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 2.5 = 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )
Lại có : n-1 và n là 2 số nguyên liên tiếp nên có 1 số chia hết cho 2 => 5.(n-1).n.(n+1) chia hết cho 10
=> n^5-n chia hết cho 10 => n^5-n có tận cùng là 0
=> n^5 và n có chữ số tận cùng bằng nhau
k mk nha
Đầu tiên chứng minh. Với mọi số n lẻ thì: \(n^5-n⋮240\)
Vì n lẻ nên ta chứng minh: \(A=\left(2k+1\right)^5-\left(2k+1\right)⋮240\)
Ta có:
\(\left(2k+1\right)^5-\left(2k+1\right)=8k\left(k+1\right)\left(2k+1\right)\left(2k^2+2k+1\right)\)
Chứng minh nó chia hết cho 16.
Vì \(k\left(k+1\right)⋮2\)
\(8k\left(k+1\right)\left(2k+1\right)\left(2k^2+2k+1\right)⋮16\)
Chứng minh nó chia hết cho 3:
Với \(k=3x\) thì \(A⋮3\)
Với \(k=3x+1\) thì \(2k+1=2\left(3x+1\right)+1=6x+3⋮3\)
Với \(k=3x+2\)thì \(k+1=3x+2+1=3x+3⋮3\)
\(\Rightarrow A⋮3\)
Chứng minh tương tự ta có được \(A⋮5\)
Vậy \(A⋮\left(16.3.5=240\right)\)
Quay lại bài toán ta có
\(a^5+b^5+c^5+d^5-a-b-c-d\)
\(=\left(a^5-a\right)+\left(b^5-b\right)+\left(c^5-c\right)+\left(d^5-d\right)⋮240\)
Từ đây ta có ĐPCM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Điểm rơi: a=b=c=1
Xét \(a^5+\frac{1}{a}\ge2a^4\)(dấu bằng xảy ra khi và chỉ khi a=1) Trùng với điểm rơi cả Bđt nhá
Tương tự: \(b^5+\frac{1}{b}\ge2b^4\)và \(c^5+\frac{1}{c}\ge2c^4\)
Công lại: \(a^5+b^5+c^5+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(a^4+b^4+c^4\right)\)
Cm: bđt phụ sao: \(a^4+b^4+c^4\ge\frac{\left(a+b+c\right)^4}{27}\left(1\right)\)
Có: \(\hept{\begin{cases}a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\\a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\end{cases}\Rightarrow\left(1\right)}\)
Vì thế: \(Bđt\ge2\left(a^4+b^4+c^4\right)\ge2\cdot\frac{\left(a+b+c\right)^4}{27}=2\cdot\frac{3^4}{3^3}=6\)
Theo bất đẳng thức cô-si
a,b,c>0
=> a5+1/a \(\ge\)2√(a5.1/a)= 2a2
Cmtt => b^5+1/b \(\ge\)2b2
1/c+c^5 \(\ge\)2c2
=> A\(\ge\)2( a2+b2+c2) \(\ge\)2.(a+b+c)2/3 ( do a2+b2+c2 \(\ge\)
(a+b+c)2/3 , cai nanày câu co thE tu cm)
A\(\ge\)2.32/3= 6(dpcm)
Từ x/2 = y/3 => x/10 = y/15 (1)
Từ y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) ta có: x/10 = y/15 = z/12
Áp dụng t/c dãy tỷ số bằng nhau ta có:
x/10 = y/15 = z/12 = (x + y - z)/(10 + 15 - 12) = 39/13 = 3
Từ x/10 = 3 => x = 30
Từ y/15 = 3 => y = 45
Từ z/12 = 3 => z = 36
\(a^5+b^5+c^5=\left[\left(a^5:a^4\right)+\left(b^5:b^4\right)+\left(c^5:c^4\right)\right]\times a^4\times b^4\times c^4\)
= \(\left[a+b+c\right]\times a^4\times b^4\times c^4=0\times a^4\times b^4\times c^4=0\)
Ma 0 chia het cho 30 \(\Rightarrow a^5+b^5+c^5\) chia het cho 30 \(\Rightarrow\) dpcm
Đặt A = a5+b5-(a+b)5
A= -5ab(a3+2a2b+2ab2+b2) chia het cho 5
_nếu a, b cùng chẵn \(\Rightarrow\)A chia het cho 2
_ nếu a, b cùng lẻ => a3+b3 chia het cho 2 =>(a3+2a2b+2ab2+b2) chia het cho 2
=> A chia het cho 2
cm chia hết cho 3 là ok ^^
Hỳ Hỳ