Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2+d^2+e^2-e\left(a+b+c+d\right)\)
\(=\left(a^2-ae+\frac{1}{4}e^2\right)+\left(b^2-be+\frac{1}{4}e^2\right)+\left(c^2-ce+\frac{1}{4}e^2\right)+\left(d^2-de+\frac{1}{4}e^2\right)\)
\(=\left(a-\frac{e}{2}\right)^2+\left(b-\frac{e}{2}\right)^2+\left(c-\frac{e}{2}\right)^2+\left(d-\frac{e}{2}\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge e\left(a+b+c+d\right)\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=\frac{e}{2}\)
bài 1b
+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)
mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số
+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)
Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)
\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)
\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)
là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2
(nhớ k nhé)
Bài 2a)
Nhân 2 vế với 2 ta có
\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)
\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Dẫu = xảy ra khi \(a=b\)
Đặt a = a1m ; c = c1m ( a1,c1,m \(\in\) N* ; (a1,c1)=1 )
\(\Rightarrow\) a1mb = c1md
\(\Rightarrow\) a1b = c1d ( Do m \(\in\) N* )
\(\Rightarrow\) a1b \(⋮\) c1 mà (a1,c1)=1 \(\Rightarrow\) b\(⋮\) c1
CMTT: d \(⋮\) c1
Đặt b = c1n ; d = a1n ( n \(\in\) N* )
Có a5+b5+c5+d5 = a15m5+c15n5+c15m5+a15n5
= ( a15 +c15 )( n5 + m5 )
Mà\(\left\{{}\begin{matrix}a_1^5+c_1^5\ge2\\m^5+n^n\ge2\end{matrix}\right.\) ( Vì a1,c1,m,n \(\in\) N* )
\(\Rightarrow\)a5+b5+c5+d5 là tích 2 số lớn hơn 1
\(\Rightarrow\) a5+b5+c5+d5 là hợp số ( đpcm )