Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ cái điều kiện đầu=>a;b;c;d<(=)2
=>a4(2-a)+b4(2-b)+c4(2-c)+d4(2-d)>(=)0
<=>2a2+2b4+2c4+2d4>(=)a5+b5+c5+d5
<=>32>(=)a5+b5+c5+d5(đpcm)
dấu bằng khi 1 trong 4 số =2
bài 1b
+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)
mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số
+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)
Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)
\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)
\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)
là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2
(nhớ k nhé)
Bài 2a)
Nhân 2 vế với 2 ta có
\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)
\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Dẫu = xảy ra khi \(a=b\)
\(a^5+b^5+c^5=\left[\left(a^5:a^4\right)+\left(b^5:b^4\right)+\left(c^5:c^4\right)\right]\times a^4\times b^4\times c^4\)
= \(\left[a+b+c\right]\times a^4\times b^4\times c^4=0\times a^4\times b^4\times c^4=0\)
Ma 0 chia het cho 30 \(\Rightarrow a^5+b^5+c^5\) chia het cho 30 \(\Rightarrow\) dpcm
Đặt A = a5+b5-(a+b)5
A= -5ab(a3+2a2b+2ab2+b2) chia het cho 5
_nếu a, b cùng chẵn \(\Rightarrow\)A chia het cho 2
_ nếu a, b cùng lẻ => a3+b3 chia het cho 2 =>(a3+2a2b+2ab2+b2) chia het cho 2
=> A chia het cho 2
cm chia hết cho 3 là ok ^^
Hỳ Hỳ
Xét 4 TH
TH1: \(a=max\left\{a,b,c,d\right\}\). Từ \(b^5+c^5+d^5=3a^5\Rightarrow\)\(a=b=c=d\)
TH2: \(b=max\left\{a,b,c,d\right\}.\)Từ \(c^7+d^7+a^7=3b^7\Rightarrow a=b=c=d\)
TH3: \(c=max\left\{a,b,c,d\right\}\). Từ \(a^3+b^3+c^3=3d^3\ge3abc\Rightarrow d^3\ge abc\)(1)
Từ \(b^5+c^5+d^5=3a^5\ge3\sqrt[3]{b^5c^5d^5}\Rightarrow a\ge\sqrt[3]{bcd}\Rightarrow a^3\ge bcd\)(2)
Từ \(c^7+d^7+a^7=3b^7\Rightarrow3b^7\ge3\sqrt[3]{c^7d^7a^7}\Rightarrow b\ge\sqrt[3]{cda}\)
\(\Rightarrow b^3\ge cda\)(3)
Từ(1)(2)(3) suy ra \(abd\ge c^3\) mà \(c\) max \(\Rightarrow a=b=c=d\)
TH4: \(d=max\left\{a,b,c,d\right\}.\)Từ \(a^3+b^3+c^3=3d^3\)\(\Rightarrow a=b=c=d\)
Vậy ta có \(a=b=c=d\)
Bài này khá là hay
tui đã từng gặp rồi đây là câu 1.2 trong đề thi hsg toán 9 tp Hà Nội
Đầu tiên chứng minh. Với mọi số n lẻ thì: \(n^5-n⋮240\)
Vì n lẻ nên ta chứng minh: \(A=\left(2k+1\right)^5-\left(2k+1\right)⋮240\)
Ta có:
\(\left(2k+1\right)^5-\left(2k+1\right)=8k\left(k+1\right)\left(2k+1\right)\left(2k^2+2k+1\right)\)
Chứng minh nó chia hết cho 16.
Vì \(k\left(k+1\right)⋮2\)
\(8k\left(k+1\right)\left(2k+1\right)\left(2k^2+2k+1\right)⋮16\)
Chứng minh nó chia hết cho 3:
Với \(k=3x\) thì \(A⋮3\)
Với \(k=3x+1\) thì \(2k+1=2\left(3x+1\right)+1=6x+3⋮3\)
Với \(k=3x+2\)thì \(k+1=3x+2+1=3x+3⋮3\)
\(\Rightarrow A⋮3\)
Chứng minh tương tự ta có được \(A⋮5\)
Vậy \(A⋮\left(16.3.5=240\right)\)
Quay lại bài toán ta có
\(a^5+b^5+c^5+d^5-a-b-c-d\)
\(=\left(a^5-a\right)+\left(b^5-b\right)+\left(c^5-c\right)+\left(d^5-d\right)⋮240\)
Từ đây ta có ĐPCM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)