Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo BĐT AM-GM :
\(a^5+\frac{1}{a}+1+1\ge4\sqrt[4]{a^5\cdot\frac{1}{a}\cdot1\cdot1}=4a\)
Dấu "=" xảy ra \(\Leftrightarrow a^5=\frac{1}{a}=1\Leftrightarrow a=1\)
+ Tương tự :
\(b^5+\frac{1}{b}+1+1\ge4b\) Dấu "=" <=> b = 1
\(c^5+\frac{1}{c}+1+1\ge4c\) Dấu "=" <=> c = 1
Do đó : \(a^5+b^5+c^5+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+6\ge4\left(a+b+c\right)\)
=> đpcm
Dấu "=" <=> a = b = c = 1
Thay 1=\(\frac{a^2+b^2+c^2}{3}\)vào va rút gọn ta được
VT= \(\frac{4}{3}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3}\left(\frac{c^2}{b}+\frac{a^2}{c}+\frac{b^2}{a}\right)+\frac{1}{3}\left(a+b+c\right)\)(1)
Áp dụng \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\left(bunhiacopxky\right)\) ta được
(1) \(\ge\frac{4}{3}\frac{\left(a+b+c\right)^2}{a+b+c}+\frac{1}{3}\frac{\left(a+b+c\right)^2}{a+b+c}+\frac{1}{3}\left(a+b+c\right)=2\left(a+b+c\right).\)
Dấu'=' khi a=b=c
B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)
TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)
\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)
\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)
\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)
Xem đây là một phương trình bậc hai ẩn a, tham số b.
Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)
\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)
Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)
(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)
TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là
\(-\frac{4}{3}\le a,b,c\le0\)
Kết hợp 2 trường hợp lại, ta có đpcm.
Cho a, b, c > 0; a+b+c=3. Chứng minh
[(a+1):(b2+1)]+[(b+1):(c2+1)]+[(c+1):(a2+1)] lớn hơn hoặc bằng 3
\(VT=\Sigma_{cyc}\frac{a+1}{b^2+1}=\Sigma_{cyc}\left(\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\right)\)
\(=\left(a+b+c+3\right)-\Sigma_{cyc}\frac{b^2\left(a+1\right)}{b^2+1}\)
\(\ge6-\Sigma_{cyc}\frac{b\left(a+1\right)}{2}=6-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b =c = 1
Is that true?
Bài 1:
Sử dụng biến đổi tương đương. Ta có:
\(a^5+b^5\geq a^3b^2+a^2b^3\)
\(\Leftrightarrow a^5+b^5-a^3b^2-a^2b^3\geq 0\)
\(\Leftrightarrow a^3(a^2-b^2)-b^3(a^2-b^2)\geq 0\)
\(\Leftrightarrow (a^3-b^3)(a^2-b^2)\geq 0\)
\(\Leftrightarrow (a-b)^2(a^2+ab+b^2)(a+b)\geq 0\) (luôn đúng với mọi $a,b$ dương)
Ta có đpcm.
Dấu bằng xảy ra khi \((a-b)^2=0\Leftrightarrow a=b\)
Bài 2: Sử dụng kết quả bài 1:
\(a^5+b^5\geq a^3b^2+a^2b^3\Rightarrow a^5+b^5+ab\geq a^3b^2+a^2b^3+ab\)
\(\Rightarrow \frac{ab}{a^5+b^5+ab}\leq \frac{ab}{a^3b^2+a^2b^3+ab}=\frac{1}{a^2b+ab^2+1}=\frac{1}{a^2b+ab^2+abc}=\frac{1}{ab(a+b+c)}\)
Hoàn toàn tt:
\(\frac{bc}{b^5+c^5+bc}\leq \frac{1}{bc(a+b+c)}; \frac{ca}{c^5+a^5+ac}\leq \frac{1}{ac(a+b+c)}\)
Do đó:
\(P\leq \frac{1}{ab(a+b+c)}+\frac{1}{bc(a+b+c)}+\frac{1}{ac(a+b+c)}\). Thay \(1=abc\)
\(\Leftrightarrow P\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\) (đpcm)
Điểm rơi: a=b=c=1
Xét \(a^5+\frac{1}{a}\ge2a^4\)(dấu bằng xảy ra khi và chỉ khi a=1) Trùng với điểm rơi cả Bđt nhá
Tương tự: \(b^5+\frac{1}{b}\ge2b^4\)và \(c^5+\frac{1}{c}\ge2c^4\)
Công lại: \(a^5+b^5+c^5+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(a^4+b^4+c^4\right)\)
Cm: bđt phụ sao: \(a^4+b^4+c^4\ge\frac{\left(a+b+c\right)^4}{27}\left(1\right)\)
Có: \(\hept{\begin{cases}a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\\a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\end{cases}\Rightarrow\left(1\right)}\)
Vì thế: \(Bđt\ge2\left(a^4+b^4+c^4\right)\ge2\cdot\frac{\left(a+b+c\right)^4}{27}=2\cdot\frac{3^4}{3^3}=6\)
Theo bất đẳng thức cô-si
a,b,c>0
=> a5+1/a \(\ge\)2√(a5.1/a)= 2a2
Cmtt => b^5+1/b \(\ge\)2b2
1/c+c^5 \(\ge\)2c2
=> A\(\ge\)2( a2+b2+c2) \(\ge\)2.(a+b+c)2/3 ( do a2+b2+c2 \(\ge\)
(a+b+c)2/3 , cai nanày câu co thE tu cm)
A\(\ge\)2.32/3= 6(dpcm)