Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}x^{1000}=a\\y^{1000}=b\end{cases}}\)
Thì ta có
\(\hept{\begin{cases}a+b=6,912\\a^2+b^2=33,76244\end{cases}}\)
Ta có (a + b)2 = a2 + b2 + 2ab = 6,9122
Từ đây suy ra được ab có ab từ đây đễ đàng suy ra được
a3 + b3 = (a + b)(a2 - ab + b2)
Đặt a = x1000 , b = y1000. Theo bài ra ta có : a + b = 6,912 và a2 + b2 = 33,76244
=> x3000 + y3000 = a3 + b3 = ( a+b)3 – 3ab ( a + b)
mà: 3ab = 3\(\frac{3\left(a+b\right)^2-\left(a^2+b^2\right)}{2}\)
=> a3 + b3 = (a +b)3 – 3 \(\frac{3\left(a+b\right)^2-\left(a^2+b^2\right)}{2}\left(a+b\right)\)
=> Thay số tính trên máy ta được: x3000 + y300= 184,9360067
Ta có : \(\left(x^{1000}+y^{1000}\right)=6,912\Rightarrow x^{2000}+y^{2000}+2\left(xy\right)^{1000}=6,912^2\Leftrightarrow\left(xy\right)^{1000}=\frac{6,912^2-33,76244}{2}\)
Lại có : \(x^{3000}+y^{3000}=\left(x^{1000}+y^{1000}\right)^3-3\left(xy\right)^{1000}\left(x^{1000}+y^{1000}\right)\)
\(=6,912^3-3.\frac{6,912^2-33,76244}{2}.6,912\)
Đến đây bạn bấm máy tính nha ^^ Đề thi CASIO đúng không?
Đặt \(a=x^{1000},b=y^{1000}\)
\(\Rightarrow a+b=6,912\) và \(a^2+b^2=33,76244.\)
Ta có \(\text{a+b= 6,912}\)
\(\Rightarrow\) \(\left(a+b\right)^2=6,912^2\)
\(\Leftrightarrow \)\(a^2+2ab+b^2=47,775744\)
\(\Leftrightarrow ab=\frac{47,775744-30,76244}{2}\)
\(\Leftrightarrow ab=8,506052\)
\(\Leftrightarrow ab(a+b)=58,797978624\)
Ta lại có \(a^3+b^3+ab(a+b)=(a+b)(a^2+b^2)\)
\(\Leftrightarrow \)\(a^3+b^3=174,5680067\)
Vậy \(x^{3000}+y^{3000}=174,5680067\)
Với x, y khác 0
Ta có:
\(a^2+b^2=1\Leftrightarrow\left(a^2+b^2\right)^2=1\Leftrightarrow a^4+2a^2b^2+b^4=1\)
Từ bài ra ta suy ra:
\(\frac{a^4}{x}+\frac{b^4}{y}=\frac{a^4+2a^2b^2+b^4}{x+y}\)
<=> \(a^4\left(x+y\right)y+b^4\left(x+y\right)x=a^4xy+2a^2b^2xy+b^4xy\)
<=> \(a^4y^2+b^4x^2-2a^2y.b^2x=0\)
<=> \(\left(a^2y-b^2x\right)^2=0\)
<=> \(a^2y-b^2x=0\)
<=> \(a^2y=b^2x\)
Câu b em xem lại đề nhé: Thử \(a=b=\frac{1}{\sqrt{2}};x=y=1\)vào ko thỏa mãn