\(\sqrt{5475...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2017

an^2=54756+15n=>n=\(\frac{an^2-54756}{15}\)

vì 1000<n<2000=>264<an<292

khởi tạo biến đếm D:263->D bằng cách 263 shift rcl sin

ghi vào màn hình D=D+1:X=\(\frac{D^2-54756}{15}\)

ấn calc và lặp phím =.

đáp số an=264,n=996;an=276,n=1428;an=279,n=1539;291,n=1995

5 tháng 8 2016

chtt là đc ý đầu 
ý sau thì dùng nhị neww

5 tháng 8 2016

chtt là j bác

27 tháng 8 2015

đặt \(\sqrt{n^2+91}=m\) (m là số tự nhiên, m >n )

=> n2 + 91 = m2

=> m - n2 = 91 

=> (m - n).(m +n) = 91 = 1.91 = 7.13 

vì m+n > m - n nên có 2 trường hợp

+) m - n = 1 và m + n = 91 => m = 46; n = 45

+) m - n = 7; m + n = 13 => m = 10;n = 3

Vậy n = 3 hoặc 45

2 tháng 10 2020

\(\sqrt{n}-\sqrt{n-1}< \frac{1}{100}\Leftrightarrow\frac{1}{\sqrt{n}-\sqrt{n-1}}>100\Leftrightarrow\sqrt{n}+\sqrt{n-1}>100\left(1\right)\)

Đến đây có thể giải bpt(1) bằng cách chuyển vế \(\sqrt{n-1}>100-\sqrt{n}\), bình phương 2  vế và đưa về \(\sqrt{n}>50,005\). do đó \(n>2500,500025\). Do \(n\in N\)và nhỏ nhất nên n=2501

Cũng có thể ước lượng từ (1) để thấy \(\sqrt{n}\)vào khoảng 50. Với \(n\le2500\)thì \(\sqrt{n}+\sqrt{n-1}\le\sqrt{2500}+\sqrt{2499}< 100\)

Với n=2501 thì \(\sqrt{n}+\sqrt{n-1}=\sqrt{2501}+\sqrt{2500}>100\)

Ta chọn n=2501