Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(X=\sqrt[3]{4798655-27n}\) với \(20349< n< 47238\)
\(\Rightarrow X^3=A\)thoả mãn \(3514229< 4789655-27n< 4240232\) hay \(351429< X^3< 4240232\)
Tức là: \(152,034921< X< 161,8563987\)
Do X là số tự nhiên nên X chỉ có thể bằng 1 trong các số sau: 153; 154; 155; .... ; 160; 161
Vì: \(X=\sqrt[3]{478965-27n}\) nên \(n=\frac{478965-X^3}{27}\)
Ghi công thức tính trên n
Máy: \(X=X+1:=\frac{478965-X^3}{27}\)
Cho đến khi nhận được các giá trị.
Nguyên dương tương ứng được: \(X=158\Rightarrow A=393944312\)
Với x bắt đầu là 153
P/s: Bn cũng có thể giải bài này bằng máy tính Casio fx-570MS
Đặt \(a^3=17313596-35n\Rightarrow n=\frac{17313596-a^3}{35}.\)
Do \(31258\le n\le49326\Rightarrow250\le a\le253\)
cho a chạy từ 250 đến 253 ta có n lần lượt là
a=251,n=42867
2,Giải:
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
Ta có:
(n2−8)2+36
=n4−16n2+64+36
=n4+20n2+100−36n2
=(n2+10)2−(6n)2
=(n2+10+6n)(n2+10−6n)
Mà để (n2+10+6n)(n2+10−6n) là số nguyên tố thì n2+10+6n=1 hoặc n2+10−6n=1
Mặt khác ta có n2+10−6n<n2+10+6n n2+10−6n=1 (n thuộc N)
n2+9−6n=0 hay (n−3)2=0 n=3
Vậy với n=3 thì (n2−8)2+36 là số nguyên tố
_________________