K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge0\\\left(y+3\right)^2\ge0\\\left|z+6\right|\ge0\end{cases}\forall x,y,z\Rightarrow\left|x-2\right|+\left(y+3\right)^2+\left|z+6\right|\ge0}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-2\right|=0\\\left(y+3\right)^2=0\\\left|z+6\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-3\\z=-6\end{cases}}}\)

14 tháng 1 2018

Ta co : |x-2| ; (y+3)^2 ; |z+6| đều >= 0 

=> |x-2|+(y+3)^2+|z+6| >= 0

Dấu "=" xảy ra <=> x-2=0 ; y+3=0 ; z+6=0  <=> x=2 ; y=-3 ; z=-6

Vậy x=2 ; y=-3 ; z=-6

Tk mk nha

14 tháng 1 2018

2x=3y=4z <=> x/3=y/4=z/2

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{72}{9}=8\)

Bài này t nhớ nãy t làm rồi , rán quay lại tham khảo

20 tháng 2 2018

2x=3y=4z \(\Leftrightarrow\) x/3=y/4=z/2

\(\text{Theo tính chất dãy tỉ số bằng nhau ta có :}\)

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{\text{ x + y + z}}{3+4+2}=\frac{72}{9}=8\text{ }\)

7 tháng 1 2018

\(2x=3y=4z\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{18}{9}=2\)

\(\frac{x}{3}=2\Rightarrow x=2.3=6\)

\(\frac{y}{4}=2\Rightarrow y=2.4=8\)

\(\frac{z}{2}=2\Rightarrow z=2.2=4\)

Vậy x=6 ; y=8 và z=4

7 tháng 1 2018

Bài này cũng tạm được :

theo đề bài ta có :

\(2x=3y=4z\)

\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\)và \(x+y+z=18\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{18}{9}=2\)

\(\Rightarrow\)\(x=2.3=6\)

\(\Rightarrow\)\(y=2.4=8\)

\(\Rightarrow\)\(z=2.2=4\)

Vậy bạn tự kết luận

8 tháng 1 2018

Đề phải là x+y+z=36 mới đúng bạn nhé

\(3x=4y=5z\Leftrightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{3}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{4+5+3}=\frac{36}{12}=3\)

\(\frac{x}{4}=3\Rightarrow x=3.4=12\)

\(\frac{y}{5}=3\Rightarrow y=3.5=15\)

\(\frac{z}{3}=3\Rightarrow z=3.3=9\)

Vậy x=12 ; y=15 và z=9

9 tháng 1 2018

Đề nó cho sẵn rồi mà bát ku

Theo đề bài ta có : 

\(3x=4y=5z\Leftrightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{3}\)và \(x+y+z=36\)

Theo đề bài ta có :

\(\frac{x}{4}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{4+5+3}=\frac{36}{12}=3\)

\(\Rightarrow\)\(x=3.4=12\)

\(\Rightarrow\)\(y=3.5=15\)

\(\Rightarrow\)\(z=3.3=9\)

8 tháng 1 2018

2x=3y=5z <=> x/3=y/5=z/2

Theo tính chất DTSBN ta có :

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y+z}{3+5+2}=\frac{40}{10}=4\)

\(\frac{x}{3}=4\Rightarrow x=4.3=12\)

\(\frac{y}{5}=4\Rightarrow y=4.5=20\)

\(\frac{z}{2}=4\Rightarrow z=4.2=8\)

Vậy x=12 ; y=20 và z=8

11 tháng 1 2018

2x=3y=4z <=> x/3=y/4=z/2

Theo tính chất DTSBN ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{36}{9}=4\)

x/3=4 => x=4.3=12

y/4=4 => y=4.4=16

z/2=4 => z=2.4=8

Vậy x=12 ; y=16 và z=8

23 tháng 2 2015

c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1

TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1 

23 tháng 2 2015

a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0 

3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7

10 tháng 8 2017

123456789?

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

22 tháng 9 2018

a) Ta có : \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-3\right)^4\ge0\forall y\\\left(z-5\right)^6\ge0\forall z\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^4+\left(z-5\right)^6\ge0\forall x,y,z\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^4=0\\\left(z-5\right)^6=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\\z=5\end{cases}}}\)

b) Ta có : \(\left(2x-y\right)^2+\left(z-1\right)^8+\left(y-5\right)^{10}\ge0\forall x,y,z\)            (1)

Ta lại có : \(\left(2x-y\right)^2+\left(z-1\right)^8+\left(y-5\right)^{10}\le0\)                         (2)

Từ (1) và (2) \(\Rightarrow\left(2x+y\right)^2+\left(z-1\right)^8+\left(y-5\right)^{10}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x+y\right)^2=0\\\left(z-1\right)^8=0\\\left(y-5\right)^{10}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=-y\\y=5\\z=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=5\\z=1\end{cases}}\)