K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

Đề phải là x+y+z=36 mới đúng bạn nhé

\(3x=4y=5z\Leftrightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{3}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{4+5+3}=\frac{36}{12}=3\)

\(\frac{x}{4}=3\Rightarrow x=3.4=12\)

\(\frac{y}{5}=3\Rightarrow y=3.5=15\)

\(\frac{z}{3}=3\Rightarrow z=3.3=9\)

Vậy x=12 ; y=15 và z=9

9 tháng 1 2018

Đề nó cho sẵn rồi mà bát ku

Theo đề bài ta có : 

\(3x=4y=5z\Leftrightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{3}\)và \(x+y+z=36\)

Theo đề bài ta có :

\(\frac{x}{4}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{4+5+3}=\frac{36}{12}=3\)

\(\Rightarrow\)\(x=3.4=12\)

\(\Rightarrow\)\(y=3.5=15\)

\(\Rightarrow\)\(z=3.3=9\)

8 tháng 1 2018

2x=3y=5z <=> x/3=y/5=z/2

Theo tính chất DTSBN ta có :

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y+z}{3+5+2}=\frac{40}{10}=4\)

\(\frac{x}{3}=4\Rightarrow x=4.3=12\)

\(\frac{y}{5}=4\Rightarrow y=4.5=20\)

\(\frac{z}{2}=4\Rightarrow z=4.2=8\)

Vậy x=12 ; y=20 và z=8

7 tháng 1 2018

\(2x=3y=4z\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{18}{9}=2\)

\(\frac{x}{3}=2\Rightarrow x=2.3=6\)

\(\frac{y}{4}=2\Rightarrow y=2.4=8\)

\(\frac{z}{2}=2\Rightarrow z=2.2=4\)

Vậy x=6 ; y=8 và z=4

7 tháng 1 2018

Bài này cũng tạm được :

theo đề bài ta có :

\(2x=3y=4z\)

\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\)và \(x+y+z=18\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{18}{9}=2\)

\(\Rightarrow\)\(x=2.3=6\)

\(\Rightarrow\)\(y=2.4=8\)

\(\Rightarrow\)\(z=2.2=4\)

Vậy bạn tự kết luận

14 tháng 1 2018

2x=3y=4z <=> x/3=y/4=z/2

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{72}{9}=8\)

Bài này t nhớ nãy t làm rồi , rán quay lại tham khảo

20 tháng 2 2018

2x=3y=4z \(\Leftrightarrow\) x/3=y/4=z/2

\(\text{Theo tính chất dãy tỉ số bằng nhau ta có :}\)

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{\text{ x + y + z}}{3+4+2}=\frac{72}{9}=8\text{ }\)

7 tháng 1 2018

x-y = 100

y+x = 200

=> x = (200+100) : 2

     x = 150

=> y = 150 - 100

     y = 50

7 tháng 1 2018

x - y = 100
     x= 100+ y            
            Vậy x=100+y
y+ X =200 
     x  = 200 - y
        Vậy x = 200 - y
 

14 tháng 1 2018

Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge0\\\left(y+3\right)^2\ge0\\\left|z+6\right|\ge0\end{cases}\forall x,y,z\Rightarrow\left|x-2\right|+\left(y+3\right)^2+\left|z+6\right|\ge0}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-2\right|=0\\\left(y+3\right)^2=0\\\left|z+6\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-3\\z=-6\end{cases}}}\)

14 tháng 1 2018

Ta co : |x-2| ; (y+3)^2 ; |z+6| đều >= 0 

=> |x-2|+(y+3)^2+|z+6| >= 0

Dấu "=" xảy ra <=> x-2=0 ; y+3=0 ; z+6=0  <=> x=2 ; y=-3 ; z=-6

Vậy x=2 ; y=-3 ; z=-6

Tk mk nha

7 tháng 1 2018

Tôi xem rồi đi

27 tháng 7 2018

ây trung

27 tháng 7 2018

b. Đặt x-1/2 = y+3/4 = z-5/6  = k

=> x = 2k+1

     y = 4k -3

      z = 6k+5

5z-3x-4y=50 => 5(6k+5)-3(2k+1)-4(4k-3) = 50

                   =>30k+25-6k-3-16k+12 = 50

                   =>(30k-6k-16k)+(25-3+12) = 50

                   =>8k+34 = 50

                   =>8k = 16 

                   =>k = 2

nên x = 2.2+1 = 5

       y = 4.2-3 = 5 

       z = 6.2+5 = 17

14 tháng 9 2019

\(\frac{x}{4}=\frac{y}{3};3y=5z\)  và x + y + z = 75

Ta có: \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}\\3y=5z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{3}\end{cases}}\)

 => \(\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}\)

=> \(\frac{x}{20}=\frac{y}{15};\frac{y}{15}=\frac{z}{9}\)

=> \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x+y+z}{20+15+9}=\frac{75}{44}\)

=> \(\hept{\begin{cases}\frac{x}{20}=\frac{75}{44}\\\frac{y}{15}=\frac{75}{44}\\\frac{z}{9}=\frac{75}{44}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{375}{11}\\y=\frac{1125}{44}\\z=\frac{675}{44}\end{cases}}\)

\(3x=4y;2y=5z\)và x + y - z = 58

Ta có : \(\hept{\begin{cases}3x=4y\\2y=5z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{2}\end{cases}}\)

=> \(\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{2}\)

Từ \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}\\\frac{y}{5}=\frac{z}{2}\Rightarrow\frac{y}{15}=\frac{z}{6}\end{cases}\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{6}=\frac{x+y-z}{20+15-6}=\frac{58}{29}=2}\)

=> \(\hept{\begin{cases}\frac{x}{20}=2\\\frac{y}{15}=2\\\frac{z}{6}=2\end{cases}}\Rightarrow\hept{\begin{cases}x=40\\y=30\\z=12\end{cases}}\)