Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>3x-5=0 và y2-1=0 và x-z=0
=>x=5/3 và y=-1 hoặc y=1 và z=5/3
tìm x bt :
a, ( 2x + 1 )4 = ( 2x + 1 )6
=>(2x+1)4-(2x+1)6=0
=>(2x+1)4-(2x+1)4.(2x+1)2=0
=>(2x+1)4.[1-(2x+1)2]=0
=>(2x+1)4=0 hoặc 1-(2x+1)2=0
=>2x+1=0 hoặc(2x+1)2=1
=>2x=-1 hoặc(2x+1)2=12
=>x=\(\dfrac{-1}{2}\) hoặc 2x+1=1 =>2x=0 => x=0
Vậy x∈{0;\(\dfrac{-1}{2}\)}
Bài 2:
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\y^2-1=0\\x=z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=z=\dfrac{5}{3}\\y\in\left\{1;-1\right\}\end{matrix}\right.\)
Ta có: (3x-5)2006 lớn hơn hoặc = 0 với mọi x
(y2-1)2008 lớn hơn hoặc = 0 vs moi y
(x-z)2100 lớn hơn hoặc = 0 vs mọi x, z
=> (3x-5)2006+(y2-1)2008+(x-z)2100 lớn hơn howacj = 0 vs mọi x
mà (3x-5)2006+(y2-1)2008+(x-z)2100=0
=> (3x-5)2006=0 ; (y2-1)2008=0 và (x-z)2100=0
+) xét (3x-5)2006=0
=>3x-5=0
=>3x=5
=>x=5/3
+) xét (y2-1)2008=0
=>y2-1=0
=>y2=1
=>y=-1 hoặc y=1
+) xét (x-z)2100=0
=>x-z=0
=>5/3-z=0
=>z=5/3
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
a)(x-3)(x-7)<0
x-3<0 hoặc x-7<0
x<3 hoặc x <7
Vậy x<3 hoặc x<7
b)(x-8)x-1+(x-8)x+21=0
(x-8)x-1+(x-8)x+1.(x-8)20=0
(x-8)x-1.(1+(x-8)20)=0
(x-8)x-1=0 hoặc 1+(x-8)20=0
x-8=0 hoặc (x-8)20 =-1(vô lí)
x=8
Vậy x=8
c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1
TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1
a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0
3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7