Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thì có ai bắt người học lớp 5 trả lời đâu dangkikoduoctaobo
a/
\(9x^2+25y^2+1+30xy-6x-10y+4y^2-20y+25=0\)
\(\Leftrightarrow\left(3x+5y-1\right)^2+\left(2y-5\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y-1=0\\2y-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{23}{6}\\y=\frac{5}{2}\end{matrix}\right.\)
b/
\(4x^2+4y^2+8xy+x^2-2x+1+y^2+2y+1=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
c/
\(y^2-2y+1+2=\frac{6}{x^2+2x+1+3}\)
\(\Leftrightarrow\left(y-1\right)^2+2=\frac{6}{\left(x+1\right)^2+3}\)
Ta có \(VT=\left(y-1\right)^2+2\ge2\)
\(\left(x+1\right)^2+3\ge3\Rightarrow VP=\frac{6}{\left(x+1\right)^2+3}\le\frac{6}{3}=2\)
\(\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}y-1=0\\x+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
d/
\(\frac{-9x^2+18x-9-8}{x^2-2x+1+2}=y^2+4y+4-4\)
\(\Leftrightarrow\frac{-9\left(x-1\right)^2-8}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)
\(\Leftrightarrow\frac{-9\left(x-1\right)^2-18+10}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)
\(\Leftrightarrow-9+\frac{10}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)
\(\Leftrightarrow\frac{10}{\left(x-1\right)^2+2}=\left(y+2\right)^2+5\)
Ta có \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{10}{\left(x-1\right)^2+2}\le\frac{10}{2}=5\Rightarrow VT\le5\)
\(\left(y+2\right)^2+5\ge5\Rightarrow VP\ge5\)
\(\Rightarrow VT\le VP\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Trả lời:
B = 9x2 + 25y2 - 30xy = ( 3x )2 - 2.3x.5y + ( 5y )2 = ( 3x - 5y )2
Thay x = 40; y = 4 vào B, ta có:
B = ( 3.40 - 5.4 )2 = ( 120 - 20 )2 = 1002 = 10000
phân tích thành nhân tử hả bạn?
\(3xy-5y-6x^2+10x=\left(3xy-5y\right)-\left(6x^2-10x\right)\)
\(=y\left(3x-5\right)-2x\left(3x-5\right)\)
\(=\left(3x-5\right)\left(y-2x\right)\)
a: \(\dfrac{9x^3y^2-4xy^2+5x}{2x}=\dfrac{9}{2}x^2y^2-2y^2+\dfrac{5}{2}\)
b: \(\left(\dfrac{3}{4}x^3y^6+\dfrac{6}{5}x^4y^3-\dfrac{9}{10}x^5y\right):\dfrac{-3}{5}x^3y\)
\(=y^5\cdot\left(\dfrac{3}{4}:\dfrac{-3}{5}\right)-xy^2\cdot\left(\dfrac{6}{5}:\dfrac{3}{5}\right)+\dfrac{9}{10}:\dfrac{3}{5}\cdot x^2\)
\(=\dfrac{-5}{4}y^5-2xy^2+\dfrac{3}{2}x^2\)
92 - 30xy + 25y2
= ( 3x )2 - 2 . 3x . 5y + ( 5y )2
= ( 3x - 5y )2
Sai thì thôi
a) \(x^2+2x+1=\left(x+1\right)^2\)
b) \(x^2+8x+16=\left(x+4\right)^2\)
c) \(x^2+6x+9=\left(x+3\right)^2\)
d) \(4x^2+4x+1=\left(2x+1\right)^2\)
e) \(36+x^2-12x=x^2-12x+36=\left(x-6\right)^2\)
f) \(4x^2+12x+9=\left(2x+3\right)^2\)
g) \(x^4+81+18x^2=x^4+18x^2+81=\left(x^2+9\right)^2\)
h) \(9x^2+30xy+25y^2=\left(3x+5y\right)^2\)
a, \(x^2\) + 2\(x\) + 1 = (\(x\) + 1)2
b, \(x^2\) + 8\(x\) + 16 = (\(x\) + 4)2
c, \(x^2\) + 6\(x\) + 9 = (\(x\) + 3)2
d, 4\(x^2\) + 4\(x\) + 1 = (2\(x\) + 1)2
thiếu đề nhaa thêm -2 vào vế phải đấy
<=> 9x^2+25y^2+1+30xy-6x-10y+4y^2-20y+25=0
<=> (9x^2+25y^2+1+30xy-6x-10y)+(4y^2-20y+25)=0
<=> {(3x+5y-1)}^2+{(2y-5)}^2=0
dễ rồi đấy