Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x\left(x-2004\right)-x+2004=0\)
\(\Leftrightarrow4x\left(x-2004\right)-\left(x-2004\right)=0\)
\(\Leftrightarrow\left(4x-1\right).\left(x-2004\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1=0\\x-2004=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=1\\x=2004\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=2004\end{matrix}\right.\)
Vậy : \(x\in\left\{\frac{1}{4},2004\right\}\)
Đơn giản như đang dỡn :V
a )
\(5\left(x+3\right)-2x\left(3+x\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(5-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\5-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy..........................
b )
\(4x\left(x-2004\right)-x+2004=0\)
\(\Leftrightarrow4x\left(x-2004\right)-\left(x-2004\right)=0\)
\(\Leftrightarrow\left(x-2004\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2004=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2004\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy.....................
c )
\(\left(x+1\right)^2=x+1\)
\(\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy.............
Tìm x:
5(x+3)-2x(3+x)=0
<=>(x+3)(5-2x)=0<=>\(\left\{{}\begin{matrix}x=-3\\x=\dfrac{5}{2}\end{matrix}\right.\)
(x+1)^2=x+1
<=> (x+1).(x+1-1)=0
<=>x(x+1)=0
<=>\(\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
(bạn ơi , mk ko biết làm câu : 4x(x-2004)-x+2004=0 đâu . Tại vì mk mới học lớp 6 nâng cao nên ko biết làm bài lớp 7 đâu .)
a/ \(5\left(x+3\right)-2x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(5-2x\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=\frac{5}{2}\end{array}\right.\)
b/ \(4x\left(x-2004\right)-x+2004=0\)
\(\Leftrightarrow4x\left(x-2004\right)-\left(x-2004\right)=0\)
\(\Leftrightarrow\left(x-2007\right)\left(4x-1\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=2007\\x=\frac{1}{4}\end{array}\right.\)
c/ \(\left(x+1\right)^2=x+1\Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)
A) 5(x+3)-2x(3+x)=0
=> 5(x+3)-2x(x+3)=0
=> (5-2x)(x+3)=0
\(\Rightarrow\left[\begin{array}{nghiempt}5-2x=0\\x+3=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-3\end{array}\right.\)
a.\(5\left(x+3\right)-2x\left(3+x\right)=0\)
\(\Leftrightarrow\left(3+x\right)\left(5-2x\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\5-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{5}{2}\end{cases}}}\)
c.\(\left(x+1\right)^2=x+1\Leftrightarrow\left(x+1\right)x=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
a)\(5\left(x+3\right)-2x\left(x+3\right)=0\)
\(\left(5-2x\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5-2x=0\\x+3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
b)\(4x\left(x+2004\right)-x+2004=0\)
\(4x^2+8016x-x+2004 =0\)
\(4x^2+8015x+2004=0\)
Xem lại đề
Bài 1:
a.\(y.\left(x-z\right)+7\left(z-x\right)\)
\(=y\left(x-z\right)-7\left(x-z\right)\)
\(=\left(y-7\right)\left(x-z\right)\)
b,\(27x^2\left(y-1\right)-9x^3\left(1-y\right)\)
\(=27x^2\left(y-1\right)+9x^3\left(y-1\right)\)
\(=\left(27x^2+9x^3\right)\left(y-1\right)\)
Bài 2
a.\(5\left(x+3\right)-2x\left(3+x\right)=0\)
\(\left(5-2x\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5-2x=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2,5\\x=-3\end{matrix}\right.\)
b.\(4x\left(x-2004\right)-x+2004=0\)
\(4x\left(x-2004\right)-\left(x-2004\right)=0\)
\(\left(4x-1\right)\left(x-2004\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1=0\\x-2004=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0,25\\x=2004\end{matrix}\right.\)
c.\(\left(x+1\right)^2=x+1\)
\(\left(x+1\right)^2-x-1=0\)
\(\left(x+1\right)^2-\left(x+1\right)=0\)
\(\left(x+1\right)\left(x+1-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+1-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\end{matrix}\right.\)
bài 1
a) y(x-z)+7(z-x)= y(x-z)-7(x-z)= (x-z)(y-7)
b) 27x2.(y-1)-9x3.(1-y)= 27x2.(y-1)+9x3.(y-1)= (y-1)(27x2-9x3)
bài 2
a) 5(x+3)+2x(x+3)=0
=(x+3)(5+2x)=0
\(\Leftrightarrow\)x+3=0 hoặc 5+2x=0
=>x=-3 hoặc x=\(\dfrac{-5}{2}\)
b)=4x(x-2014)-(x-2014)=0
= (x-2014)(4x-1)=0
\(\Leftrightarrow\)x-2014=0 hoặc 4x-1=0
=>x=2014 hoặc x= \(\dfrac{1}{4}\)
câu c) thấy kì kì, k biết làm
\(\dfrac{x^2-2x+2004}{x^2}=\dfrac{\dfrac{2003}{2004}x^2+\dfrac{1}{2004}x^2-2x+2004}{x^2}=\dfrac{2003}{2004}+\dfrac{\dfrac{1}{2004}\left(x^2-2.2004+2004^2\right)}{x^2}=\dfrac{2003}{2004}+\dfrac{\dfrac{1}{2004}\left(x-2004\right)^2}{x^2}\ge\dfrac{2003}{2004}\)
\("="\Leftrightarrow x=2004\)
a ) \(5\left(x+3\right)-6x-2x^2=0\)
\(\Leftrightarrow5\left(x+3\right)-2x\left(3+x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5-2x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy ...
b ) \(\left(x-2004\right)=8016x-4x^2\)
\(\Leftrightarrow x-2004=-4x\left(x-2004\right)\)
\(\Leftrightarrow x-2004+4x\left(x-2004\right)=0\)
\(\Leftrightarrow\left(x-2004\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2004=0\\4x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2004\\4x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2004\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy ...
c ) \(\left(x+1\right)^2=x+1\)
\(\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[\left(x+1\right)-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+1-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\end{matrix}\right.\)
Vậy ...
a) \(5\left(x+3\right)-6x-2x^2=0\)
\(\Rightarrow5\left(x+3\right)-2x\left(3+x\right)=0\)
\(\Rightarrow\left(x+3\right)\left(5-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\5-2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{5}{2}\end{matrix}\right.\)
b) \(\left(x-2004\right)=8016x-4x^2\)
\(\Rightarrow\left(x-2004\right)=4x\left(2004-x\right)\)
\(\Rightarrow\left(x-2004\right)-4x\left(2004-x\right)=0\)
\(\Rightarrow\left(x-2004\right)+4x\left(x-2004\right)=0\)
\(\Rightarrow\left(x-2004\right)\left(1+4x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2004=0\\1+4x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2004\\x=-\dfrac{1}{4}\end{matrix}\right.\)
c) \(\left(x+1\right)^2=x+1\)
\(\Rightarrow\left(x+1\right)^2-\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+1-1\right)=0\)
\(\Rightarrow\left(x+1\right)x=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\end{matrix}\right.\)
\(B=x^2-6x+2004\\ B=x^2-6x+9+1995\\ B=\left(x-3\right)^2+1995\ge1995\)
đẳng thức xảy ra khi x-3=0 => x=3
vậy MINB=1995 tại x=3
\(C=4x^2+4x+2018\\ C=4x^2+4x+1+2017\\ C=\left(2x+1\right)^2+2017\ge2017\)
đẳng thức xảy ra khi 2x+1=0 => x=-1/2
vậy MINC=2017 tại x=-1/2
Ta có :
\(B=x^2-6x+2004\)
\(B=x^2-6x+9+1995\)
\(B=\left(x-3\right)^2+1995\)
Do : \(\left(x-3\right)^2\ge0\left(x\in R\right)\)
\(\Rightarrow\left(x-3\right)^2+1995\ge1995\left(x\in R\right)\)
Vậy GTNN của \(B=1995\)
Dấu \(=\) xảy ra khi \(x=3\)
Ta có :
\(C=4x^2+4x+2018\)
\(C=\left(4x^2+4x+1\right)+2017\)
\(C=\left(2x+1\right)^2+2017\)
Do : \(\left(2x+1\right)^2\ge0\left(x\in R\right)\)
\(\Rightarrow\left(2x+1\right)^2+2017\ge2017\left(x\in R\right)\)
Vậy \(GTNN\) của \(B=2017\)
Dấu \(=\) xảy ra khi \(x=-\dfrac{1}{2}\)
\(PT\Leftrightarrow\left(4x-1\right).\left(x-2004\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1=0\\x-2004=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=2004\end{matrix}\right.\)
Vậy : ...