\(5\left(x+3\right)-6x-2x^2=0\)

b.\(\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

a ) \(5\left(x+3\right)-6x-2x^2=0\)

\(\Leftrightarrow5\left(x+3\right)-2x\left(3+x\right)=0\)

\(\Leftrightarrow\left(5-2x\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5-2x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy ...

b ) \(\left(x-2004\right)=8016x-4x^2\)

\(\Leftrightarrow x-2004=-4x\left(x-2004\right)\)

\(\Leftrightarrow x-2004+4x\left(x-2004\right)=0\)

\(\Leftrightarrow\left(x-2004\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2004=0\\4x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2004\\4x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2004\\x=-\dfrac{1}{4}\end{matrix}\right.\)

Vậy ...

c ) \(\left(x+1\right)^2=x+1\)

\(\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[\left(x+1\right)-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+1-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\end{matrix}\right.\)

Vậy ...

18 tháng 8 2018

a) \(5\left(x+3\right)-6x-2x^2=0\)

\(\Rightarrow5\left(x+3\right)-2x\left(3+x\right)=0\)

\(\Rightarrow\left(x+3\right)\left(5-2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\5-2x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{5}{2}\end{matrix}\right.\)

b) \(\left(x-2004\right)=8016x-4x^2\)

\(\Rightarrow\left(x-2004\right)=4x\left(2004-x\right)\)

\(\Rightarrow\left(x-2004\right)-4x\left(2004-x\right)=0\)

\(\Rightarrow\left(x-2004\right)+4x\left(x-2004\right)=0\)

\(\Rightarrow\left(x-2004\right)\left(1+4x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2004=0\\1+4x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2004\\x=-\dfrac{1}{4}\end{matrix}\right.\)

c) \(\left(x+1\right)^2=x+1\)

\(\Rightarrow\left(x+1\right)^2-\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x+1-1\right)=0\)

\(\Rightarrow\left(x+1\right)x=0\)

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\end{matrix}\right.\)

28 tháng 1 2017

a) \(\left(x+1\right)\left(2x-1\right)\left(-x+2\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x+1=0\\2x-1=0\\-x+2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\x=\frac{1}{2}\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{-1;\frac{1}{2};2\right\}\)

b) \(\left(2x-1\right)\left(3x+2\right)\left(4x-5\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}2x-1=0\\3x+2=0\\4x-5=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=\frac{1}{2}\\x=-\frac{2}{3}\\x=\frac{5}{4}\\x=7\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{\frac{1}{2};-\frac{2}{3};\frac{5}{4};7\right\}\)

c) \(x^2-6x+11=0\)

\(\Leftrightarrow x^2-6x+9+2=0\)

\(\Leftrightarrow\left(x-3\right)^2+2=0\) (vô lí)

Vậy phương trình vô nghiệm

d) \(\left(x^2+2x+3\right)\left(x^2-25\right)\left(x+19\right)=0\)

\(\Leftrightarrow\left(x^2+2x+1+2\right)\left(x+5\right)\left(x-5\right)\left(x+19\right)=0\)

\(\Leftrightarrow\left[\left(x+1\right)^2+2\right]\left(x+5\right)\left(x-5\right)\left(x+19\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x+5=0\\x-5=0\\x+19=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-5\\x=5\\x=-19\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{\pm5;-19\right\}\)

28 tháng 1 2017

a,b,d dễ mà bạn tự làm

c,x2-6x+11=0<=> x2-6x+9+2=0

<=>(x-3)2=-2(vô lý)

vậy pt vô nghiệm

4 tháng 10 2020

Có làm theo hàng đẳng thức ko bạn?

5 tháng 10 2020

8 tháng 2 2018

a. \(9\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow9x+18-3x-6=0\)

\(\Leftrightarrow6x+12=0\)

\(\Leftrightarrow x=-2\)

e. \(\left(2x-1\right)^2-45=0\)

\(\Leftrightarrow4x^2-2x+1-45=0\)

\(\Leftrightarrow4x^2-2x-44=0\)

Đến đó tự giải tiếp nha!

c. \(2\left(2x-5\right)-3x=0\)

\(\Leftrightarrow4x-10-3x=0\)

\(\Leftrightarrow x-10=0\)

\(\Leftrightarrow x=10\)

g. \(2x^2-6x=0\)

\(\Leftrightarrow2x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

20 tháng 2 2018

sao làm nhung cau de the

12 tháng 8 2019

b) \(7x\left(x-2\right)-\left(x-2\right)=0\) 

<=>  \(\left(7x-1\right)\left(x-2\right)=0\)

=> x=1/7  hoặc x=2

c) <=>  (2x-1)3   =0 

=> x=1/2

d)<=>  \(\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)

<=>  \(\left(2x-3\right)\left(x+3\right)=0\)

=> x=3/2  hoặc x=-3

e) <=>\(x^2\left(x+5\right)+9\left(x+5\right)=0\)

<=> \(\left(x+5\right)\left(x^2+9\right)=0\)

=> x=-5

f) \(x^3-6x^2-x+30=0\)

<=>\(x^3+2x^2-8x^2-16x+15x+30=0\)

<=>\(x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

<=>\(\left(x+2\right)\left(x^2-5x-3x+15\right)=0\)

<=> \(\left(x+2\right)\left(x-5\right)\left(x-3\right)=0\)

=> x=-2 hoặc x=5 hoặc x=3

Bài 1: Phân tích đa thức thành nhân tử: a) \(2x\left(x+1\right)+2\left(x+1\right)\) b) \(y^2\left(x^2+y\right)-zx^2-zy\) c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\) d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\) e) \(x^2-6xy+9y^2\) f) \(x^3+6x^2y+12xy^2+8y^3\) g) \(x^3-64\) h) \(125x^3+y^6\) k) \(0,125\left(a+1\right)^3-1\) t) \(x^2-2xy+y^2-xz+yz\) q) \(x^2-y^2-x+y\) p) \(a^3x-ab+b-x\) đ)...
Đọc tiếp

Bài 1: Phân tích đa thức thành nhân tử:

a) \(2x\left(x+1\right)+2\left(x+1\right)\)

b) \(y^2\left(x^2+y\right)-zx^2-zy\)

c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\)

d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

e) \(x^2-6xy+9y^2\)

f) \(x^3+6x^2y+12xy^2+8y^3\)

g) \(x^3-64\)

h) \(125x^3+y^6\)

k) \(0,125\left(a+1\right)^3-1\)

t) \(x^2-2xy+y^2-xz+yz\)

q) \(x^2-y^2-x+y\)

p) \(a^3x-ab+b-x\)

đ) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)

l) \(x^2-x-6\)

i) \(x^4+4x^2-5\)

m) \(x^3-19x-30\)

j) \(x^4+x+1\)

y) \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

o) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

ê) \(4a^2b^2-\left(a^2+b^2+c^2\right)^2\)

w) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)

z) \(\left(x^2-8\right)^2+36\)

u) \(81x^4+4\)

Bài 2 : Tìm x

a)\(\left(2x-1\right)^2-25=0\)

b) \(8x^3-50x=0\)

c) \(\left(x-2\right)\left(x^2+2+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

d) \(3x\left(x-1\right)+x-1=0\)

e) \(2\left(x+3\right)-x^2-3x\) =0

f) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

5
12 tháng 10 2017

Bài 1 :

a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)

b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)

c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)

d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)

e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)

12 tháng 10 2017

Bài 1 :

f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)

g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)

h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)

29 tháng 9 2017

Câu a : Mình ko biết làm .

Câu b : Bạn làm rồi khỏi làm nữa

Câu c :

\(x\left(2x-7\right)-4x+14=0\)

\(x\left(2x-7\right)-\left(4x-14\right)=0\)

\(x\left(2x-7\right)-2\left(2x-7\right)=0\)

\(\left(2x-7\right)\left(x-2\right)=0\)

\(\left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\end{matrix}\right.\)

Vậy \(x=\dfrac{7}{2}\) \(x=2\)

Câu d :

\(\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

\(\left(x-8\right)\left(3x+2\right)=0\)

\(\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(x=8\) \(x=-\dfrac{2}{3}\)

29 tháng 9 2017

Vậy em xin câu a ^^

a, \(6x^3+x^2+x+1=0\)

\(\Rightarrow6x^3+3x^2-2x^2-x+2x+1=0\)

\(\Rightarrow3x^2\left(2x+1\right)-x\left(2x+1\right)+\left(2x+1\right)=0\)

\(\Rightarrow\left(2x+1\right)\left(3x^2-x+1\right)=0\) (1)

Ta có: \(3x^2-x+1=3x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{12}+\dfrac{11}{12}\)

\(=3x\left(x-\dfrac{1}{6}\right)-\dfrac{1}{2}\left(x-\dfrac{1}{6}\right)+\dfrac{11}{12}\)

\(=3\left(x-\dfrac{1}{6}\right)^2+\dfrac{11}{12}>0\) (2)

Từ (1) và (2) suy ra \(2x+1=0\Rightarrow x=-\dfrac{1}{2}\)

Chúc bạn học tốt!!!

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!