K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

\(B=x^2-6x+2004\\ B=x^2-6x+9+1995\\ B=\left(x-3\right)^2+1995\ge1995\)

đẳng thức xảy ra khi x-3=0 => x=3

vậy MINB=1995 tại x=3

\(C=4x^2+4x+2018\\ C=4x^2+4x+1+2017\\ C=\left(2x+1\right)^2+2017\ge2017\)

đẳng thức xảy ra khi 2x+1=0 => x=-1/2

vậy MINC=2017 tại x=-1/2

15 tháng 10 2017

Ta có :

\(B=x^2-6x+2004\)

\(B=x^2-6x+9+1995\)

\(B=\left(x-3\right)^2+1995\)

Do : \(\left(x-3\right)^2\ge0\left(x\in R\right)\)

\(\Rightarrow\left(x-3\right)^2+1995\ge1995\left(x\in R\right)\)

Vậy GTNN của \(B=1995\)

Dấu \(=\) xảy ra khi \(x=3\)

Ta có :

\(C=4x^2+4x+2018\)

\(C=\left(4x^2+4x+1\right)+2017\)

\(C=\left(2x+1\right)^2+2017\)

Do : \(\left(2x+1\right)^2\ge0\left(x\in R\right)\)

\(\Rightarrow\left(2x+1\right)^2+2017\ge2017\left(x\in R\right)\)

Vậy \(GTNN\) của \(B=2017\)

Dấu \(=\) xảy ra khi \(x=-\dfrac{1}{2}\)

15 tháng 9 2018

Ta có B=2018+4x+4x2

=(2x)2+2.2x+1+2017

=(2x+1)2 +2017

Do (2x+1)2\(\ge0\Rightarrow B\ge2017\)

=>Min B=2017 \(\Leftrightarrow\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)

Vậy/................

A=2017-x2-5x

=-(x2+5x)+2017

=\(-\left(x^2+2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}\right)+2017\)

=\(-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}+2017\)

=\(-\left(x+\frac{5}{2}\right)^2+\frac{8093}{4}\)

Do \(-\left(x+\frac{5}{2}\right)^2\le0\Rightarrow A\le\frac{8093}{4}\)

=> Max A= \(\frac{8093}{4}\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy ...........................

Phần b bn làm tương tự nha

tk mk nhé

26 tháng 8 2020

A = x2 + 4x + 7

   = ( x2 + 4x + 4 ) + 3

   = ( x + 2 )2 + 3

( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinA = 3 <=> x = -2

B = 2x2 - 6x 

   = 2( x2 - 3x + 9/4 ) - 9/2

   = 2( x - 3/2 )2 - 9/2

2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2 

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MinB = -9/2 <=> x = 3/2

C = -2x2 + 8x - 15

    = -2( x2 - 4x + 4 ) - 7

    = -2( x - 2 )2 - 7

-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxC = -7 <=> x = 2

23 tháng 8 2019

2. Ta có: A = x2 - 6x + 5 = (x2 - 6x + 9) - 4 = (x - 3)2 - 4 

Ta luôn có: (x - 3)2 \(\ge\)\(\forall\)x

=> (x - 3)2 - 4 \(\ge\)-4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3

Vậy MinA = -4 tại  x = 3

Ta có: B = 4x2 - 8x + 7 = 4(x2 - 2x + 1) + 3 = 4(x - 1)2 + 3

Ta luôn có: 4(x - 1)2 \(\ge\)\(\forall\)x

=> 4(x - 1)2 + 3 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1

vậy MinB = 3 tại x = 1

Ta có: C = 2x2 + 4x - 6 = 2(x2 + 2x + 1) - 8 = 2(x + 1)2 - 8

Ta luôn có: 2(x + 1)2 \(\ge\)\(\forall\)x

=> 2(x + 1)2 - 8 \(\ge\)-8 \(\forall\)x

Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1

Vậy MinC = -8 tại x = -1

23 tháng 8 2019

1/

\(A=x^2-6x+5\)

\(A=x^2-2\cdot3x+3^2-3^2+5\)

\(A=\left(x-3\right)^2-3^2+5\)

\(A=\left(x-3\right)^2-9+5\)

\(A=\left(x-3\right)^2-4\)

mà \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-4\ge-4\)

\(\Rightarrow GTNNA\left(x^2-6x+5\right)=-4\)

với \(\left(x-3\right)^2=0;x=3\)

\(B=4x^2-8x+7\)

\(B=4\left(x^2-2x+\frac{7}{4}\right)\)

\(B=4\left(x^2-2\cdot1x+1-1+\frac{7}{4}\right)\)

\(B=4\left(x-1\right)^2+3\)

\(\left(x-1\right)^2\ge0\Rightarrow4\left(x^2-1\right)^2+3\ge3\)

\(\Rightarrow GTNNB=3\)

với \(\left(x-1\right)^2=0;x=1\)

\(C=2x^2+4x-6\)

\(C=2\left(x^2+2x-3\right)\)

\(C=2\left(x^2+2\cdot1x+1-1-3\right)\)

\(C=\left(x+1\right)^2-8\)

\(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2-8\ge-8\)

\(\Rightarrow GTNNC=-8\)

với \(\left(x+1\right)^2=0;x=-1\)

23 tháng 8 2019

2.

c) \(C=2x^2+4x-6=2\left(x^2+2x+1\right)-8\)

\(=2\left(x+1\right)^2-8\ge-8\forall x\)

Dấu"=" xảy ra<=> \(2\left(x+1\right)^2=0\Leftrightarrow x=-1\)

3.

c) \(C=-3x^2-6x+9=-3\left(x^2+2x+1\right)+12\)

\(=-3\left(x+1\right)^2+12\le12\forall x\)

Dấu "=" xảy ra<=> \(-3\left(x+1\right)^2=0\Leftrightarrow x=-1\)

23 tháng 8 2019

\(2,GTNN\)

\(A=x^2-6x+5=x^2+6x+9-4\)

\(=\left(x+3\right)^2-4\ge-4\)

\(A_{min}=-4\Leftrightarrow\left(x+3\right)^2=0\Rightarrow x=-3\)

\(B=4x^2-8x+7=4\left(x^2-2x+\frac{7}{4}\right)\)

\(=4\left(x^2-2x+1+\frac{3}{4}\right)=4\left(x-1\right)^2+3\ge3\)

\(\Rightarrow B_{min}=3\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)

\(C=2x^2+4x-6=2\left(x^2+2x-3\right)\)

\(=2\left(x^2+2x+1-4\right)=2\left(x+1\right)^2-8\ge-8\)

\(\Rightarrow C_{min}=-8\Leftrightarrow\left(x+1\right)^2=0\Rightarrow x=-1\)

23 tháng 8 2019

\(3,GTLN\)

\(A=-x^2+2x-3=-\left(x^2-2x+3\right)\)

\(=-\left(x^2-2x+1-4\right)=-\left(x-1\right)^2+4\le4\)

\(A_{max}=4\Leftrightarrow-\left(x-1\right)^2=0\Rightarrow x=1\)

\(B=-9x^2+6x-4=-\left[9x^2-6x+4\right]\)

\(=-\left[\left(3x\right)^2-6x+1+3\right]=-\left(3x-1\right)^2-3\)

\(B_{max}=-3\Leftrightarrow-\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)

\(C=-3x^2-6x+9=-3\left(x^2+2x-3\right)\)

\(=-3\left(x^2+2x+1-4\right)=-3\left(x+1\right)^2+12\)

\(C_{max}=12\Leftrightarrow-3\left(x+1\right)^2=0\Rightarrow x=-1\)

28 tháng 7 2018

a) 4x2 + 4x + 1 = (2x + 1)2 \(\ge\)\(\forall\)
=> gtnn của bt = 0 <=> x= -0,5
b) 9x2 + 6x + 11 = ( 3x + 1)2 + 10 \(\ge\) 10 \(\forall\)x
=> gtnn của bt = 10 <=> x = -1/3
c) 2x2 + 3x + 4 = \(\frac{4x^2+6x+8}{2}=\frac{\left(2x+\frac{3}{2}\right)^2}{2}+2.875\ge2.875\forall x\)
gtnn của bt = 2.875 <=> x= -3/4

28 tháng 7 2018

a) \(4x^2+4x+1=\left(2x\right)^2+2.2x.1+1^2=\left(2x+1\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow x=\frac{-1}{2}\)

Vậy GTNN của biểu thức bằng 0 khi và chỉ khi x = -1/2

b) \(9x^2+6x+11=\left(3x\right)^2+2.3x.1+1+10=\left(3x+1\right)^2+10\ge10\)

Dấu "=" xảy ra <=> 3x+1 = 0 <=> x = -1/3

Vậy GTNN của biểu thức bằng 10 khi và chỉ khi x = -1/3

c) \(2x^2+3x+4=2.\left(x^2+\frac{3}{2}x+2\right)=2.\left(x^2+2.\frac{3}{4}.x+\frac{9}{16}\right)+\frac{23}{8}=2.\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\ge\frac{23}{8}\)

Dấu "=" xảy ra <=> x+3/4 = 0 <=> x = -3/4

Vậy GTNN của biểu thức bằng 23/8 khi và chỉ khi x = -3/4