Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(5\left(x+3\right)-2x\left(3+x\right)=0\)
\(\Leftrightarrow\left(3+x\right)\left(5-2x\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\5-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{5}{2}\end{cases}}}\)
c.\(\left(x+1\right)^2=x+1\Leftrightarrow\left(x+1\right)x=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
a)\(5\left(x+3\right)-2x\left(x+3\right)=0\)
\(\left(5-2x\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5-2x=0\\x+3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
b)\(4x\left(x+2004\right)-x+2004=0\)
\(4x^2+8016x-x+2004 =0\)
\(4x^2+8015x+2004=0\)
Xem lại đề
Bài 1:
a.\(y.\left(x-z\right)+7\left(z-x\right)\)
\(=y\left(x-z\right)-7\left(x-z\right)\)
\(=\left(y-7\right)\left(x-z\right)\)
b,\(27x^2\left(y-1\right)-9x^3\left(1-y\right)\)
\(=27x^2\left(y-1\right)+9x^3\left(y-1\right)\)
\(=\left(27x^2+9x^3\right)\left(y-1\right)\)
Bài 2
a.\(5\left(x+3\right)-2x\left(3+x\right)=0\)
\(\left(5-2x\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5-2x=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2,5\\x=-3\end{matrix}\right.\)
b.\(4x\left(x-2004\right)-x+2004=0\)
\(4x\left(x-2004\right)-\left(x-2004\right)=0\)
\(\left(4x-1\right)\left(x-2004\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1=0\\x-2004=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0,25\\x=2004\end{matrix}\right.\)
c.\(\left(x+1\right)^2=x+1\)
\(\left(x+1\right)^2-x-1=0\)
\(\left(x+1\right)^2-\left(x+1\right)=0\)
\(\left(x+1\right)\left(x+1-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+1-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\end{matrix}\right.\)
bài 1
a) y(x-z)+7(z-x)= y(x-z)-7(x-z)= (x-z)(y-7)
b) 27x2.(y-1)-9x3.(1-y)= 27x2.(y-1)+9x3.(y-1)= (y-1)(27x2-9x3)
bài 2
a) 5(x+3)+2x(x+3)=0
=(x+3)(5+2x)=0
\(\Leftrightarrow\)x+3=0 hoặc 5+2x=0
=>x=-3 hoặc x=\(\dfrac{-5}{2}\)
b)=4x(x-2014)-(x-2014)=0
= (x-2014)(4x-1)=0
\(\Leftrightarrow\)x-2014=0 hoặc 4x-1=0
=>x=2014 hoặc x= \(\dfrac{1}{4}\)
câu c) thấy kì kì, k biết làm
Đơn giản như đang dỡn :V
a )
\(5\left(x+3\right)-2x\left(3+x\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(5-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\5-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy..........................
b )
\(4x\left(x-2004\right)-x+2004=0\)
\(\Leftrightarrow4x\left(x-2004\right)-\left(x-2004\right)=0\)
\(\Leftrightarrow\left(x-2004\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2004=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2004\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy.....................
c )
\(\left(x+1\right)^2=x+1\)
\(\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy.............
Tìm x:
5(x+3)-2x(3+x)=0
<=>(x+3)(5-2x)=0<=>\(\left\{{}\begin{matrix}x=-3\\x=\dfrac{5}{2}\end{matrix}\right.\)
(x+1)^2=x+1
<=> (x+1).(x+1-1)=0
<=>x(x+1)=0
<=>\(\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
(bạn ơi , mk ko biết làm câu : 4x(x-2004)-x+2004=0 đâu . Tại vì mk mới học lớp 6 nâng cao nên ko biết làm bài lớp 7 đâu .)
a ) \(9x^2-49=9\)
\(\Leftrightarrow9x^2=58\)
\(\Leftrightarrow x^2=29\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=29\\x=-29\end{array}\right.\)
Vậy ......................
b ) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)-27=0\)
\(\Leftrightarrow\left(x^3+3^3\right)-x.\left(x^2-1^2\right)-27=0\)
\(\Leftrightarrow x^3+27-x^3+x-27=0\)
\(\Leftrightarrow x=0\)
c ) \(\left(x-1\right)\left(x+2\right)-x-2=0\)
\(\Leftrightarrow x^2+2x-x-2-x-2=0\)
\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\end{array}\right.\)
Vây .....................
bài 1.
a) (4x3 - 2)(2x3- x + \(\dfrac{5}{8}\))
= 8x6 - 4x4 + \(\dfrac{5}{2}\)x3 - 4x3 + 2x - \(\dfrac{5}{4}\)
b) (x2y2 - xy + y)(x - y)
= x3y2 - x2y + xy - x2y3 + xy2 - y2
c) (x + 2y)(x2 - 2xy + y2)
= x3 + 8y3
d) (7x - 3)(7x + 3) + (2x - 3)2
= 49x2 - 9 + 4x2 - 12x + 9
= 53x2 - 12x
Bài 2.
a) 4(3x - 1) - 2(5 - 3x) = 24
12x - 4 - 10 + 6x - 24 = 0
18x - 38 = 0
\(\Rightarrow\) 18x = 38
\(\Rightarrow\) x = \(\dfrac{19}{9}\)
b) 4x2 - 9 = 0
\(\Rightarrow\) 4x2 = 9
\(\Rightarrow\) x2 = \(\dfrac{9}{4}\)
\(\Rightarrow\) x = \(\pm\dfrac{3}{2}\)
vậy x = 3/2 hoặc x = -3/2
c) x3 - 25x = 0
x(x2 - 25) = 0
x(x - 5)(x + 5) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
d) (x2 + 4)2 - 16x2 = 0
(x2 + 4 - 4x)(x2 + 4 + 4x) = 0
\(\Rightarrow\) (x - 2)2.(x + 2)2 = 0
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(x+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Bài 3.
a) x(x + y) + y(x + y)
Ta có:
x(x + y) + y(x + y)
= (x + y)(x + y)
= (x + y)2
Thay x = 2004 và y = -2003 vào biểu thức đại số ta có:
[2004 + (-2003)]2 = 12
= 1
b) x2 + xy - xz - yz
Ta có:
x2 + xy - xz - yz
= (x2 + xy) - (xz + yz)
= x(x + y) - z(x + y)
= (x - z)(x + y)
Thay x= 6,5; y = 3,5 và z = 37,5 vào biểu thức đại số, ta có:
(6,5 - 37,5)(6,5 + 3,5)
= -31 . 10
= -310
c) x2 - 6xy + 9y2
ta có:
x2 - 6xy + 9y2
= (x - 3y)2
Thay x = 14 và y = -2 vào biểu thức đại số, ta có:
[14 - (-2)]2 = (14 + 2)2
= 162 = 256
Nhớ tik mik nhé không lần sau mik ko giúp đâu
có j ko hỉu cứ bình luận ở dưới
\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)
\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)
\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)
\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)
(2x-3)2-(x+5)2=0
<=>(2x-3-x-5)(2x-3+x+5)=0
<=>(x-8)(3x+2)=0
<=>x-8=0 hoặc 3x+2=0
<=>x=8 hoặc x=-2/3
(2x-3)2
-(x+5)2=0
<=>(2x-3-x-5)(2x-3+x+5)=0
<=>(x-8)(3x+2)=0
<=>x-8=0 hoặc 3x+2=0
<=>x=8 hoặc x=-2/3
chcú cậu hok tốt @_@
a) 3x(4x - 3) - 2x(5 - 6x) = 0
=> 6x2 - 9x - 10x + 12x2 = 0
=> 18x2 - 19x = 0
=> x(18x - 19) = 0
=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0
=> 8x - 15 = 0
=> 8x = 15
=> x = 15 : 8 = 15/8
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x
=> 4x - x2 - 5x2 - 15x = 0
=> -6x2 - 11x = 0
=> -x(6x - 11) = 0
=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)
a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)
b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)
a/ \(5\left(x+3\right)-2x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(5-2x\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=\frac{5}{2}\end{array}\right.\)
b/ \(4x\left(x-2004\right)-x+2004=0\)
\(\Leftrightarrow4x\left(x-2004\right)-\left(x-2004\right)=0\)
\(\Leftrightarrow\left(x-2007\right)\left(4x-1\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=2007\\x=\frac{1}{4}\end{array}\right.\)
c/ \(\left(x+1\right)^2=x+1\Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)
A) 5(x+3)-2x(3+x)=0
=> 5(x+3)-2x(x+3)=0
=> (5-2x)(x+3)=0
\(\Rightarrow\left[\begin{array}{nghiempt}5-2x=0\\x+3=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-3\end{array}\right.\)