Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất hai tiếp tuyến cắt nhau ta có
a) ^COD=^O22 +^O32 =12 (^O1+^O2+^O3+^O4)=12 .180∘=90∘.
b) CD = CM + MD = CA + DB.
c) AC.BD=MC.MD=OM2AC.BD=MC.MD=OM2 (cố định).
a: Xét (O) có
CA là tiếp tuyến
CM là tiếp tuyến
DO đó: CA=CM và OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó:DM=DB và OD là tia phân giác của góc MOB(2)
Ta có: CM+MD=CD
nên CD=AC+BD
b: Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot180^0=90^0\)
Xét ΔCOD vuông tại O có OM là đường cao
nên \(MC\cdot MD=OM^2\)
=>\(R^2=AC\cdot BD\)
Câu cuối là gì nhờ
A A A B B B M M M C C C D D D O O O H H H K K K E E E F F F I I I a/Vì C là giao điểm 2 tiếp tuyến (O) nên ta có AC=MC,^OCM=1/2 ^ACD
Tương tự thì BD=DM, ^ODC=1/2 ^BDC.Từ đó suy ra AC+BD=CM+DM=CD và ^COD=90
b/Từ kết quả ở câu a thì ta chỉ cần chứng minh CM.DM=R2=OM2
Ta dễ dàng chứng minh được đẳng thức trên vì ta có \(\Delta OCM~\Delta DOM\left(g.g\right)\)
c/Ta có OC là đường trung trực của AM nên suy ra AM vuông góc OC tại H,H là trung điểm AM
Lại có BM vuông góc với OD tại K,K là trung điểm BM và ^COD=90(cmt)
Suy ra OHMK là hcn
d/Từ câu c suy ra ngay OC//BM, mà O là trung điểm AB nên OC là đtb của tam giác ABE
Suy ra C là trung điểm AE
e/MF cắt HK thì phải
Ta có tam giác AMF có HI//AF,H là trung điểm AM suy ra I là trung điểm MF
f/Gọi T là trung điểm CD, ta dễ thấy (COD) là (T,TO)
Mà ta có TO vuông góc với AB(tính chất đường tb hình thang)
g/ ghi đề dùm
a) Ta thấy CA, CE là hai tiếp tuyến của đường tròn tâm O nên theo tính chất hai tiếp tuyến cắt nhau ta có:
\(\widehat{COA}=\widehat{COE}\)
Tương tự \(\widehat{DOE}=\widehat{DOB}\)
Suy ra \(\widehat{DOE}+\widehat{COE}=\widehat{DOB}+\widehat{COA}\Rightarrow\widehat{COD}=\widehat{DOB}+\widehat{COA}\)
Mà \(\widehat{DOB}+\widehat{COA}+\widehat{COD}=180^o\Rightarrow\widehat{COD}=90^o\)
b) Theo tính chất hai tiếp tuyến cắt nhau, ta có \(OC\perp AE\)
\(\Rightarrow\widehat{OAE}=\widehat{ACO}\) (Cùng phụ với góc AOC)
Mà \(\widehat{ACO}=\widehat{ECO}\Rightarrow\widehat{COD}=\widehat{EAB}\)
Vậy thì \(\Delta AEB\sim\Delta COD\left(g-g\right)\)
c) Gọi I là trung điểm CD. Xét hình thang ACDB có IO là đường trung bình nên IO // AC//BD
Vậy nên OI vuông góc với AB tại O, hay AB là tiếp tuyến tại O của đường tròn (I, CD/2)
Lời giải:
a)
Ta thấy $CA$ và $CM$ đều là tt của $(O)$
Theo tính chất 2 tiếp tuyến cắt nhau ta có: \(CA=CM\)
Tương tự với 2 tiếp tuyến $DM, DB$ ta cũng có \(DM=DB\)
Do đó:
\(CA+DB=DM+CM=CD\) (đpcm)
b) Kéo dài $CO$ cắt $By$ tại $K$
Xét tam giác $CAO$ và $KBO$ có:
\(\left\{\begin{matrix}
AO=BO=R\\
\widehat{COA}=\widehat{KOB}\\
\widehat{CAO}=\widehat{KBO}=90^0\end{matrix}\right.\Rightarrow \triangle CAO=\triangle KBO(g.c.g)\)
\(\Rightarrow CA=KB\)
Do đó: \(CA.BD=BK.BD(1)\)
Mặt khác: Theo phần a, ta cm được: \(CD=AC+BD\)
Mà $AC+BD=KB+BD=DK$ nên $CD=DK$
Do đó tam giác $DCK$ cân tại $D$
Suy ra đường trung tuyến $DO$ (\(OC=OD\) suy ra từ 2 tam giác bằng nhau ở trên) đồng thời là đường cao $DO$
\(\Rightarrow DO\perp OK\)
Tam giác vuông $DOK$ có đường cao $OB$ ứng với cạnh huyền nên theo kết quả của hệ thức lượng thì: \(DB.BK=OB^2=R^2(2)\)
Từ \((1);(2)\Rightarrow AC.BD=R^2\)
Ta có đpcm.
a: Xét (O) có
CM là tiếp tuyến có M là tiếp điểm
CA là tiếp tuyến có A là tiếp điểm
Do đó: CM=CA
Xét (O) có
DB là tiếp tuyến có B là tiếp điểm
DM là tiếp tuyến có M là tiếp điểm
Do đó: DB=DM
Ta có: MC+MD=DC
mà MC=CA
và DM=DB
nên AC+DB=CD