K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

CA là tiếp tuyến

CM là tiếp tuyến

DO đó: CA=CM và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó:DM=DB và OD là tia phân giác của góc MOB(2)

Ta có: CM+MD=CD
nên CD=AC+BD

b: Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot180^0=90^0\)

Xét ΔCOD vuông tại O có OM là đường cao

nên \(MC\cdot MD=OM^2\)

=>\(R^2=AC\cdot BD\)

9 tháng 12 2016

câu này lm thế nào mình ko bít

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB và OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot180^0=90^0\)

Ta có: MC+MD=CD

nên CD=CA+DB

b: Xét ΔCOD vuông tại O có OM là đường cao

nên \(CM\cdot DM=OM^2=R^2\)

hay \(AC\cdot BD=R^2\)

a) Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm(gt)

CA là tiếp tuyến có A là tiếp điểm(gt)

Do đó: CM=CA(Tính chất hai tiếp tuyến cắt nhau)

Xét (O) có 

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: DB=DM(Tính chất hai tiếp tuyến cắt nhau)

Ta có: CD=CM+DM(M nằm giữa C và D)

mà CM=CA(cmt)

và DM=DB(cmt)

nên CD=CA+DB

 

a: Xét (O) co

CM,CA là tiếp tuyên

=>CM=CA 

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB

CD=CM+MD

=>CD=CA+BD

b: Xet ΔACN và ΔDBN có

góc NAC=góc NDB

góc ANC=góc DNB

=>ΔACN đồng dạng vơi ΔDBN

=>AC/BD=AN/DN

=>CN/MD=AN/ND

=>MN//AC//BD