Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\frac{5^2}{3.8}+\frac{5^2}{8.13}+\frac{5^2}{13.18}+.....+\frac{5^2}{88.93}\)
=\(\frac{5.5}{3.8}+\frac{5.5}{8.13}+\frac{5.5}{13.18}+...+\frac{5.5}{88.93}\)
= \(5\left(\frac{5}{3.8}+\frac{5}{8.13}+\frac{5}{13.18}+...+\frac{5}{88.93}\right)\)
=\(5\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+.....+\frac{1}{88}-\frac{1}{93}\right)\)
=\(5\left(\frac{1}{3}-\frac{1}{93}\right)=\frac{50}{31}\)
\(\frac{10}{3.8}+\frac{10}{8.13}+\frac{10}{13.18}+...+\frac{10}{48.53}\)
\(=\frac{10}{5}\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+...+\frac{1}{48}-\frac{1}{53}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{53}\right)\)
\(=2.\frac{50}{159}=\frac{100}{159}\)
Ta có: *)A.5=5(1/3.8+1/8.13+...+1/33.38)
=5/3.8+5/8.13+...+5/33.38
=1/3-1/8+1/8-1/13+...+1/33-1/38
=1/3-1/38
=> A=(1/3-1/38).1/5
*)7B=7/3.10+7/10.17+7/17.24+...+7/31.38
=1/3-1/10+1/10-1/17+...+1/31-1/38
=1/3-1/38
=>B=(1/3-1/38).1/7
Do đó a/b=(1/5)/(1/7)=7/5
k mk nha!
\(A=\frac{10}{3.8}+\frac{10}{8.13}+\frac{10}{13.18}+\frac{10}{18.23}+\frac{10}{23.28}\)
\(A=2\left(\frac{5}{3.8}+\frac{5}{8.13}+\frac{5}{13.18}+\frac{5}{18.23}+\frac{5}{23.28}\right)\)
\(A=2\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{23}-\frac{1}{28}\right)\)
\(A=2\left(\frac{1}{3}-\frac{1}{28}\right)\)
\(A=2.\frac{25}{84}=\frac{25}{42}\)
\(A=\frac{10}{3\cdot8}+\frac{10}{8\cdot13}+\frac{10}{13\cdot18}+\frac{10}{18\cdot23}+\frac{10}{23\cdot28}\)
\(A=10\left(\frac{1}{3\cdot8}+\frac{1}{8\cdot13}+\frac{1}{13\cdot18}+\frac{1}{18\cdot23}+\frac{1}{23\cdot28}\right)\)
\(A=\frac{10}{5}\left(\frac{5}{3\cdot8}+\frac{5}{8\cdot13}+\frac{5}{13\cdot18}+\frac{5}{18\cdot23}+\frac{5}{23\cdot28}\right)\)
\(A=2\cdot\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+\frac{1}{18}-\frac{1}{23}+\frac{1}{23}-\frac{1}{28}\right)\)
\(A=2\cdot\left(\frac{1}{3}-\frac{1}{28}\right)\)
\(A=2\cdot\frac{25}{84}\)
\(A=\frac{25}{42}\)
\(B=\frac{10}{3\cdot8}+\frac{10}{8\cdot13}+\frac{10}{13\cdot18}+\frac{10}{18\cdot23}+\frac{10}{23\cdot28}\)
\(B=2\left[\frac{5}{3\cdot8}+\frac{5}{8\cdot13}+\frac{5}{13\cdot18}+\frac{5}{18\cdot23}+\frac{5}{23\cdot28}\right]\)
\(B=2\left[\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{23}-\frac{1}{28}\right]\)
\(B=2\left[\frac{1}{3}-\frac{1}{28}\right]=\frac{25}{42}\)
Có:
\(\frac{5^3}{8.13}+\frac{5^3}{13.18}+...+\frac{5^3}{93.98}\)
= \(5^2\left(\frac{5}{8.13}+\frac{5}{13.18}+...+\frac{5}{93.98}\right)\)
=\(25\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+...+\frac{1}{93}-\frac{1}{98}\right)\)
=\(25\left(\frac{1}{8}-\frac{1}{98}\right)\)
=\(\frac{1125}{392}\)
=> \(\frac{1125}{392}.3\frac{17}{125}\)
= ...
\(\frac{2^{15}\cdot9^4}{6^3.8^3}=\frac{2^{15}.3^8}{2^3.3^3.2^9}=\frac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5=8.243=1944\)
\(D=\dfrac{4}{8\cdot13}+\dfrac{4}{13\cdot18}+\dfrac{4}{18\cdot23}+...+\dfrac{4}{253\cdot258}\\ =\dfrac{4}{5}\cdot\dfrac{5}{8\cdot13}+\dfrac{4}{5}\cdot\dfrac{5}{13\cdot18}+\dfrac{4}{5}\cdot\dfrac{5}{18\cdot23}+...+\dfrac{4}{5}\cdot\dfrac{5}{253\cdot258}\\ =\dfrac{4}{5}\left(\dfrac{5}{8\cdot13}+\dfrac{5}{13\cdot18}+\dfrac{5}{18\cdot23}+...+\dfrac{5}{253\cdot258}\right)\\ =\dfrac{4}{5}\cdot\left(\dfrac{1}{8}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{23}+...+\dfrac{1}{253}-\dfrac{1}{258}\right)\\ =\dfrac{4}{5}\cdot\left(\dfrac{1}{8}-\dfrac{1}{258}\right)\\ =\dfrac{4}{5}\cdot\dfrac{125}{1032}\\ =\dfrac{25}{258}\)
ta có
Tính:
\(\dfrac{4}{8.13}+\dfrac{4}{13.18}+....+\dfrac{4}{253.258}\)
= 4 (\(\dfrac{1}{8.13}+\dfrac{1}{13.18}+.....+\dfrac{1}{253.258}\))
=\(\dfrac{4}{5}\left(\dfrac{1}{8}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{18}+...+\dfrac{1}{253}-\dfrac{1}{258}\right)\)
=\(\dfrac{4}{5}\left(\dfrac{1}{8}-\dfrac{1}{258}\right)\)
=\(\dfrac{25}{258}\)
\(A=\frac{1}{7\cdot12}+\frac{1}{12\cdot17}+\frac{1}{17\cdot22}+...+\frac{1}{52\cdot57}\)
\(A=\frac{1}{5}\left(\frac{5}{7\cdot12}+\frac{5}{12\cdot17}+\frac{5}{17\cdot22}+...+\frac{5}{52\cdot57}\right)\)
\(A=\frac{1}{5}\left(\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+...+\frac{1}{52}-\frac{1}{57}\right)\)
\(A=\frac{1}{5}\left(\frac{1}{7}-\frac{1}{57}\right)=\frac{1}{5}\cdot\frac{50}{399}=\frac{10}{399}\)
\(B=\frac{10}{8\cdot13}+\frac{10}{13\cdot18}+\frac{10}{18\cdot23}+...+\frac{10}{253\cdot258}\)
\(B=\frac{10}{5}\left(\frac{5}{8\cdot13}+\frac{5}{13\cdot18}+\frac{5}{18\cdot23}+...+\frac{5}{253\cdot258}\right)\)
\(B=2\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+...+\frac{1}{253}-\frac{1}{258}\right)\)
\(B=2\left(\frac{1}{8}-\frac{1}{258}\right)=2\cdot\frac{125}{1032}=\frac{125}{516}\)
*Cái đây giải thích hơi bị " khó hiểu " :
Chỗ mẫu (12 - 7) = (17 - 12) = ... = (57 - 52) = 5
Tử là 1 , mẫu là 5 nên tử/mẫu = 1/5
Hay \(\frac{1}{5}\left(\frac{5}{7\cdot12}+\frac{5}{12\cdot17}+...+\frac{5}{52\cdot57}\right)\)
Còn bạn Trương Bùi Linh thì :
Mẫu = (13 - 8) = (18 - 13) = (23 - 18) = ... = 5
Tử là 10,mẫu là 5 => tử / mẫu = 10/5 = 2
A = \(\dfrac{2}{3.8}\) + \(\dfrac{2}{8.13}\) + \(\dfrac{2}{13.18}\) + ... + \(\dfrac{2}{58.63}\)
A = 2.\(\dfrac{5}{5}\).(\(\dfrac{1}{3.8}\) + \(\dfrac{1}{8.13}\) + \(\dfrac{1}{13.18}\)+...+ \(\dfrac{2}{58.63}\))
A = \(\dfrac{2}{5}\).(\(\dfrac{5}{3.8}\) + \(\dfrac{5}{8.13}\) + \(\dfrac{5}{13.18}\) + ... + \(\dfrac{5}{58.63}\))
A = \(\dfrac{2}{5}\).(\(\dfrac{1}{3}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{18}+...+\dfrac{1}{58}-\dfrac{1}{63}\))
A = \(\dfrac{2}{5}\).(\(\dfrac{1}{3}\) - \(\dfrac{1}{63}\))
A = \(\dfrac{2}{5}\). \(\dfrac{20}{63}\)
A = \(\dfrac{8}{63}\)