Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5A = 5/3.8 + 5/8.13 + 5/13.18 + ... + 5/33.38
= 1/3 - 1/8 + 1/8 - 1/13 + ... + 1/33 - 1/38
= 1/3 - 1/38
5A = 35/114
=> A = 35/114 : 5 = 7/144
7B = 7/3.10 + 7/10.17 + ... + 7/31.38
= 1/3 - 1/10 + 1/10- 1/17 + .. + 1/31 - 1/38
= 1/3 - 1/38
B = 35/144 : 7 = 5/144
VẬy A> B
A=1/3.8+1/8.13+1/13.18+...+1/33.38
5A=5/3.8+5/8.13+5/13.18+...+5/33.38
5A=1/3-1/8+1/8-1/13+1/13-1/18+...+1/33-1/38
5A=1/3-1/38
5A=38/114-3/114
5A=35/114
A=35/114:5
A=7/114
B=1/3.10+1/10.17+1/17.24+1/24.31+1/31.38
7B=7/3.10+7/10.17+7/17.24+7/24.31+7/31.38
7B=1/3-1/10+1/0-1/17+1/17-1/24+1/24-1/31+1/31-1/38
7B=1/3-1/38
7B=38/114-3/114
7B=35/114
B=35/114:7
B=5/114
\(A=\frac{1}{7\cdot12}+\frac{1}{12\cdot17}+\frac{1}{17\cdot22}+...+\frac{1}{52\cdot57}\)
\(A=\frac{1}{5}\left(\frac{5}{7\cdot12}+\frac{5}{12\cdot17}+\frac{5}{17\cdot22}+...+\frac{5}{52\cdot57}\right)\)
\(A=\frac{1}{5}\left(\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+...+\frac{1}{52}-\frac{1}{57}\right)\)
\(A=\frac{1}{5}\left(\frac{1}{7}-\frac{1}{57}\right)=\frac{1}{5}\cdot\frac{50}{399}=\frac{10}{399}\)
\(B=\frac{10}{8\cdot13}+\frac{10}{13\cdot18}+\frac{10}{18\cdot23}+...+\frac{10}{253\cdot258}\)
\(B=\frac{10}{5}\left(\frac{5}{8\cdot13}+\frac{5}{13\cdot18}+\frac{5}{18\cdot23}+...+\frac{5}{253\cdot258}\right)\)
\(B=2\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+...+\frac{1}{253}-\frac{1}{258}\right)\)
\(B=2\left(\frac{1}{8}-\frac{1}{258}\right)=2\cdot\frac{125}{1032}=\frac{125}{516}\)
*Cái đây giải thích hơi bị " khó hiểu " :
Chỗ mẫu (12 - 7) = (17 - 12) = ... = (57 - 52) = 5
Tử là 1 , mẫu là 5 nên tử/mẫu = 1/5
Hay \(\frac{1}{5}\left(\frac{5}{7\cdot12}+\frac{5}{12\cdot17}+...+\frac{5}{52\cdot57}\right)\)
Còn bạn Trương Bùi Linh thì :
Mẫu = (13 - 8) = (18 - 13) = (23 - 18) = ... = 5
Tử là 10,mẫu là 5 => tử / mẫu = 10/5 = 2
Bài 3
\(\frac{n+6}{n+1}=\frac{n+1+5}{n+1}=\frac{n+1}{n+1}+\frac{5}{n+1}\)
\(=1+\frac{5}{n+1}\)
Vậy để \(\frac{n+6}{n+1}\in Z\Rightarrow1+\frac{5}{n+1}\in Z\)
Hay \(\frac{5}{n+1}\in Z\)\(\Rightarrow n+1\inƯ_5\)
\(Ư_5=\left\{1;-1;5;-5\right\}\)
* \(n+1=1\Rightarrow n=0\)
* \(n+1=-1\Rightarrow n=-2\)
* \(n+1=5\Rightarrow n=4\)
* \(n+1=-5\Rightarrow n=-6\)
Vậy \(n\in\left\{0;-2;4;-6\right\}\)
Bài 2:
\(\frac{10}{3.8}+\frac{10}{8.13}+\frac{10}{13.18}+\frac{10}{18.23}+\frac{10}{23.28}=2\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{23}-\frac{1}{28}\right)\\ =2\left(\frac{1}{3}-\frac{1}{28}\right)\\ =2.\frac{56}{84}\\ =\frac{56}{42}=\frac{28}{21}\)
\(\frac{1}{3.8}+\frac{1}{8.13}+...+\frac{1}{2018.2023}\)
Ta có : \(\frac{1}{3.8}+\frac{1}{8.13}+...+\frac{1}{2018.2023}\)
\(=\frac{1}{5}.\left(\frac{5}{3.8}+\frac{5}{8.13}+...+\frac{5}{2018.2023}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{2018}-\frac{1}{2023}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{3}-\frac{1}{2023}\right)\)
\(=\frac{1}{5}.\frac{2020}{6069}=\frac{404}{6069}\)
1/3.10+1/10.17+......+1/73.80 - 1/2.9 - 1/9.16 - 1/16.23 - 1/23.30
= (7/3.10+7/10.17+......+7/73.80) : 7 - (7/2.9 + 7/9.16 + 7/16.23 + 7/23.30) : 7
= (1/3-1/10+1/10-1/17+...+1/73-1/80) : 7 - (1/2-1/9+1/9-1/16+1/16-1/23+1/23-1/30) : 7
=(1/3-1/80) : 7 - (1/2-1/30) : 7
= 77/240 : 7 - 7/15 : 7
=11/240 - 1/15
= -1/48
Nhấn đúng cho mk nha!!!!!!!!!!!!!
Ta có: *)A.5=5(1/3.8+1/8.13+...+1/33.38)
=5/3.8+5/8.13+...+5/33.38
=1/3-1/8+1/8-1/13+...+1/33-1/38
=1/3-1/38
=> A=(1/3-1/38).1/5
*)7B=7/3.10+7/10.17+7/17.24+...+7/31.38
=1/3-1/10+1/10-1/17+...+1/31-1/38
=1/3-1/38
=>B=(1/3-1/38).1/7
Do đó a/b=(1/5)/(1/7)=7/5
k mk nha!