Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=2x-1/2x+1
=2x+1-2/2x+1
=1-2/2x+1
Để P nguyên thì 2 chia hết 2x+1
nên 2x+1 thuộc ước của 2
ta có:
2x+1=1 thì x=0
2x+1=2 thì x=1/2
2x+1=-1 thì x=-1
2x+1=-2 thì x=-3/2
Để \(P=\frac{2x-1}{2x+1}\)nhận giá trị nguyên
\(\Rightarrow2x-1⋮2x+1\)
\(\Rightarrow2x+1-2⋮2x+1\)
\(\Rightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(2x+1=1\Rightarrow x=0\)
\(2x+1=-1\Rightarrow x=-1\)
\(2x+1=2\Rightarrow x=\frac{1}{2}\)
\(2x+1=-2\Rightarrow x=\frac{-3}{2}\)
KL :....
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Để P nhân giá trị nguyên thì 2x-1 chia hết cho 2x+1
=> (2x+1)-2 chia hết cho 2x+1
=> 2 chia hết cho 2x+1
=> 2x+1 thuộc ước của 2 ( vì x thuộc Z nên 2x+1 cũng thuộc Z )
Mà 2x+1 lẻ => 2x+1 thuộc {-1;1}
=> x thuộc {-1;0}
Vậy ...........
Tk mk nha
a) Đặt \(A=\frac{x}{x+3}=\frac{x+3-3}{x+3}=\frac{x+3}{x+3}-\frac{3}{x+3}=1-\frac{3}{x+3}\)
Để A nguyên thì \(\frac{3}{x+3}\) nguyên => \(3⋮x+3\)
=> \(x+3\in\left\{1;-1;3;-3\right\}\)
=> \(x\in\left\{-2;-4;0;-6\right\}\)
Vậy \(x\in\left\{-2;-4;0;-6\right\}\)
b) Đặt \(B=\frac{x-1}{2x+1}\)
Để B nguyên thì 2B nguyên
Ta có:
\(2B=\frac{2.\left(x-1\right)}{2x+1}=\frac{2x-2}{2x+1}=\frac{2x+1-3}{2x+1}=\frac{2x+1}{2x+1}-\frac{3}{2x+1}=1-\frac{3}{2x+1}\)
Để 2B nguyên thì \(\frac{3}{2x+1}\) nguyên => \(3⋮2x+1\)
=> \(2x+1\in\left\{1;-1;3;-3\right\}\)
=> \(2x\in\left\{0;-2;2;-4\right\}\)
=> \(x\in\left\{0;-1;1;-2\right\}\)
Vậy \(x\in\left\{0;-1;1;-2\right\}\)
\(A=\frac{7x+2}{x-1}=\frac{7x-7+9}{x-1}=\frac{7\left(x-1\right)+9}{x-1}=\frac{7\left(x-1\right)}{x-1}+\frac{9}{x-1}=7+\frac{9}{x-1}\)
Để A nguyên thì \(\frac{9}{x-1}\) là số nguyên
<=>9 chia hết cho x-1
<=>x-1\(\inƯ\left(9\right)\)
<=>x-1\(\in\left\{-9;-3;-1;1;3;9\right\}\)
<=>\(x\in\left\{-8;-2;0;2;4;10\right\}\)
Vậy với x\(\in\left\{-8;-2;0;2;4;10\right\}\) thì A nhận giá trị nguyên
a) \(A=\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)
Thay x=4 (tm) vào A ta có: \(A=\frac{6\cdot4-1}{3\cdot4+2}=\frac{23}{14}\)
Thay x=-1(tm) vào A ta có: \(A=\frac{-1\cdot6-1}{3\cdot\left(-1\right)+2}=\frac{-6-1}{-3+2}=\frac{-7}{-1}=7\)
Thay x=0 (tm) ta có: \(A=\frac{6\cdot0-1}{3\cdot0+2}=\frac{-1}{2}\)
Vậy A=\(\frac{23}{14}\)khi x=4; \(A=7\)khi x=-1; A=\(\frac{-1}{2}\)khi x=0
b) A=\(\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)
Để A là số nguyên thì 6x-1 chia hết cho 3x+2
\(\Leftrightarrow A=\frac{2\left(3x+2\right)-5}{3x+2}=2-\frac{5}{3x+2}\)
Để A nguyên thì \(\frac{5}{3x+2}\)nguyên => 5 chia hết cho 3x+2
Vì x thuộc Z => 3x+2 thuộc Z => 3x+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
3x+2 | -5 | -1 | 1 | 5 |
3x | -7 | -3 | -1 | 3 |
x | \(\frac{-7}{3}\) | -1 | \(\frac{-1}{3}\) | 1 |
Vậy x={-1;1} thì A nguyên
Ta có \(\frac{6x+1}{2x-1}=\frac{3.\left(2x-1\right)+4}{2x-1}=3+\frac{4}{2x-1}\)\(\left(x\ne\frac{1}{2}\right)\)
Vì \(3\in Z\)nên để \(\frac{6x+1}{2x-1}\in Z\)thì \(\frac{4}{2x-1}\in Z\)
Hay \(2x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm3\right\}\)
Vì \(2x-1\)là số lẻ nên \(2x-1\in\left\{\pm1;\pm3\right\}\)
Giải tiếp nha
\(A=\frac{6x+1}{2x-1}=\frac{6x-3+4}{2x-1}\)
\(=3+\frac{4}{2x-1}\)
Để biểu thức \(A=3+\frac{4}{2x-1}\)có giá trị nguyên thì : \(\frac{4}{2x-1}\)phải có giá trị nguyên
\(\Rightarrow2x-1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow2x\in\left\{-3;-1;0;2;3;5\right\}\)
\(\Rightarrow x\in\left\{-\frac{3}{2};-\frac{1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)
Do x là số nguyên , nên : \(x\in\left\{0;1\right\}\)