\(3^{n+3}+2^{n+2}-3^{n+2}+2^{n+2}\)chia hết cho 6

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2024

CCó cái chem chép

18 tháng 11 2019

=3^n.9+3^n+2^n.4+2^n=3^n(9+1)+2^n(1+4)=>làm nốt

15 tháng 7 2016

\(A=1^n+2^n+3^n+4^n\)

n không chia hết cho 4 thì n chỉ có thể có các số dư: 1; 2; 3 khi chia cho 4.

Ta lập bảng chữ số tận cùng

nn=4k+1n=4k+2n=4k+3
1n111
2n...2...4...8
3n...3...9...7
4n...4...6...4
A=1n+2n+3n+4n...0...0...0

A luôn có tận cùng là 0 nên A chia hết cho 10 => A chia hết cho 5 - đpcm

4 tháng 4 2017

3n+2-2n+2+3n-2n

=(3n+2+3n)-(2n+2+2n)

=3n(32+1)-2n(22+1)

=3n.10-2n.5

=3n.10-2n-1.10

Vì \(n\in N\)* nên \(2^{n-1}\ge1\)

Có 3n.10 chia hết cho 10

2n-1.10 chia hết cho 10

=>3n.10-2n-1.10 chia hết cho 10

Vậy N chia hết cho 10

4 tháng 4 2017

Ta có : N = 3n + 2 - 2n + 2 + 3n - 2n

              = (3n + 2 + 3n) - (2n + 2 + 2n)

              = 3n(32 + 1) - 2n - 1(23 + 2)

              = 3n.10 - 2n - 1.10

           N = 10 . (3n - 2n - 1)

Mà n là số nguyên dương nên 3n , 2n - 1 là số nguyên => 3n - 2n - 1 là số nguyên

Nên 10 . (3n - 2n - 1) chia hết cho 10 \(\forall n\) nguyên dương

Vậy N chia hết cho 10 \(\forall n\) nguyên dương

23 tháng 6 2015

Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)\(3^n-2^n\)\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

 = \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)\(3^n\times10-2^{n-1}\times10\)

= 10 \(\times\left(3^n+2^{n+1}\right)\)

chia hết cho 10

Bài 2 : 

\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)

\(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)

chia het cho 100

12 tháng 4 2018

ehdhfhdfh

15 tháng 8 2016

c) n2 + 1 chia hết cho n - 1 (n thuộc N, n khác 1)                                                                                                                                                            
\(\Rightarrow\frac{n^2+1}{n-1}\in N\Rightarrow\frac{n^2+1}{n-1}=\frac{n^2+n-n-1+2}{n-1}=\frac{n\left(n+1\right)-\left(n+1\right)+2}{n-1}=\frac{\left(n-1\right)\left(n+1\right)+2}{n-1}=n+1+\frac{2}{n-1}\in N\)
Mà \(n+1\in N\)\(\Rightarrow\frac{2}{n-1}\in N\Rightarrow\)2 chia hết cho n - 1
Từ đây bạn tự làm tiếp nha........

18 tháng 2 2018

dễ như toán lớp 6 vậy

17 tháng 1 2018

a) \(S=3^{n+2}-2^{n+2}+3^n-2^n\)

\(S=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(S=\left(3^n.9+3^n\right)-\left(2^n.4+2^n\right)\)

\(S=3^n.10-2^n.5\)

\(S=3^n.10-2^{n-1}.10=\left(3^n-2^{n-1}\right).10⋮10\left(đpcm\right)\)

b) Ta có: \(\left\{{}\begin{matrix}7\left(x-2004\right)^2\ge0\\7\left(x-2004\right)^2⋮7\end{matrix}\right.\)

\(\Rightarrow y^2\le23\)\(23-y^2⋮7\)

\(\Rightarrow23-y^2\in B\left(7\right)=\left\{0;7;14;21;28;...\right\}\)

\(y^2\in N\)\(y^2\le23\)

\(\Rightarrow23-y^2=\left[{}\begin{matrix}7\\14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=4\\y=3\end{matrix}\right.\)

Thay vào là tìm được x

17 tháng 1 2018

a, S= \(3^{n+2}-2^{n+2}-3^n-2^n\)
= \(3^n.3^2-2^n.2^2+3^n-2^n\)
= \(3^n.3^2+3^n-2^n.2^2-2n\)
= \(3^n.9+3^n-\left(2^n.4+2^n\right)\)
= \(3^n\left(9+1\right)-\left[2^n\left(4+1\right)\right]\)
= \(3^n.10-2^n.5\)
= \(3^n.10-2.2^{n-1}.5\)
= \(3^n.10-2^{n-1}.10\)
= 10.( \(3^n-2^{n-1}\))
Vì 10 chia hết cho 10 nên 10.(\(3^n-2^{n-1}\)) chia hết cho 10
=> S chia hết cho 10

Y
9 tháng 2 2019

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\forall n\)

9 tháng 2 2019

3n+2-2n+2+3n-2n

=(3n+2+3n)+(-2n+2-2n)

=3n.(32+1)-2n.(22+1)

=3n.10-2n.5

=3n.10-2n-1.10

=10.(3n-2n-1) chia hết cho 10

Vậy 3n+2-2n+2+3n-2n chia hết cho 10