\(^{3^{n+2}}\)-\(^{2^{n+2}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
9 tháng 2 2019

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\forall n\)

9 tháng 2 2019

3n+2-2n+2+3n-2n

=(3n+2+3n)+(-2n+2-2n)

=3n.(32+1)-2n.(22+1)

=3n.10-2n.5

=3n.10-2n-1.10

=10.(3n-2n-1) chia hết cho 10

Vậy 3n+2-2n+2+3n-2n chia hết cho 10

9 tháng 2 2018

Ta có \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10 

9 tháng 2 2018

Ta có 3n+2-2n+2+3n-2n

= 3n.9-2n.4+3n-2n

= 3n(9+1)-2n(4+1)

= 3n.10-2n.5=3n.10-2n-1.10

Nhận thấy 3n.10 chia hết cho 10 với mọi số nguyên dương n; 2n-1.10 chia hết cho 10 với mọi số nguyên dương n

=> 3n+2-2n+2+3n-2chia hết cho 10 với mọi số nguyên dương n

13 tháng 7 2015

- Đề bài có sai không bạn , mình thử rồi mà k đc :))) bạn thử thử bằng n = 1 đi k ra đâu

28 tháng 8 2016

a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)

\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)

Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10

=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10  => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10

23 tháng 8 2015

3n+2-2n+2+3n-2n=9.3n+3n-4.2n-2n=10.3n-5.2n

Mà 10.3n chia hết cho 10 (1)

Và:

2n chẵn nên 5.2n chia hết cho 10 (2)

Từ (1) và (2) suy ra 10.3n-5.2nchia hết cho 10 (đpcm)

 

19 tháng 9 2015

\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.9-2^n.4+3^n-2^n\)

\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right):10\)

2 tháng 3 2017

\(N=3^{n+2}-2^{n+2}+3^n-2^n\)

\(\Rightarrow N=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(\Rightarrow N=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)

\(\Rightarrow N=\left[3^n\left(3^2+1\right)\right]-\left[2^{n-1}\left(2^3+2\right)\right]\)

\(\Rightarrow N=3^n.10-2^{n-1}.10\)

\(\Rightarrow N=\left(3^n-2^{n-1}\right).10⋮10\)

\(\Rightarrow N⋮10\left(đpcm\right)\)

Vậy \(N⋮10\)