\(3^{n+2}+3^n+2^{n+2}+2^n\)chia hết cho 10 (với n thuộc N*)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2024

CCó cái chem chép

4 tháng 4 2017

3n+2-2n+2+3n-2n

=(3n+2+3n)-(2n+2+2n)

=3n(32+1)-2n(22+1)

=3n.10-2n.5

=3n.10-2n-1.10

Vì \(n\in N\)* nên \(2^{n-1}\ge1\)

Có 3n.10 chia hết cho 10

2n-1.10 chia hết cho 10

=>3n.10-2n-1.10 chia hết cho 10

Vậy N chia hết cho 10

4 tháng 4 2017

Ta có : N = 3n + 2 - 2n + 2 + 3n - 2n

              = (3n + 2 + 3n) - (2n + 2 + 2n)

              = 3n(32 + 1) - 2n - 1(23 + 2)

              = 3n.10 - 2n - 1.10

           N = 10 . (3n - 2n - 1)

Mà n là số nguyên dương nên 3n , 2n - 1 là số nguyên => 3n - 2n - 1 là số nguyên

Nên 10 . (3n - 2n - 1) chia hết cho 10 \(\forall n\) nguyên dương

Vậy N chia hết cho 10 \(\forall n\) nguyên dương

17 tháng 1 2018

a) \(S=3^{n+2}-2^{n+2}+3^n-2^n\)

\(S=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(S=\left(3^n.9+3^n\right)-\left(2^n.4+2^n\right)\)

\(S=3^n.10-2^n.5\)

\(S=3^n.10-2^{n-1}.10=\left(3^n-2^{n-1}\right).10⋮10\left(đpcm\right)\)

b) Ta có: \(\left\{{}\begin{matrix}7\left(x-2004\right)^2\ge0\\7\left(x-2004\right)^2⋮7\end{matrix}\right.\)

\(\Rightarrow y^2\le23\)\(23-y^2⋮7\)

\(\Rightarrow23-y^2\in B\left(7\right)=\left\{0;7;14;21;28;...\right\}\)

\(y^2\in N\)\(y^2\le23\)

\(\Rightarrow23-y^2=\left[{}\begin{matrix}7\\14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=4\\y=3\end{matrix}\right.\)

Thay vào là tìm được x

17 tháng 1 2018

a, S= \(3^{n+2}-2^{n+2}-3^n-2^n\)
= \(3^n.3^2-2^n.2^2+3^n-2^n\)
= \(3^n.3^2+3^n-2^n.2^2-2n\)
= \(3^n.9+3^n-\left(2^n.4+2^n\right)\)
= \(3^n\left(9+1\right)-\left[2^n\left(4+1\right)\right]\)
= \(3^n.10-2^n.5\)
= \(3^n.10-2.2^{n-1}.5\)
= \(3^n.10-2^{n-1}.10\)
= 10.( \(3^n-2^{n-1}\))
Vì 10 chia hết cho 10 nên 10.(\(3^n-2^{n-1}\)) chia hết cho 10
=> S chia hết cho 10

2 tháng 3 2017

\(N=3^{n+2}-2^{n+2}+3^n-2^n\)

\(\Rightarrow N=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(\Rightarrow N=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)

\(\Rightarrow N=\left[3^n\left(3^2+1\right)\right]-\left[2^{n-1}\left(2^3+2\right)\right]\)

\(\Rightarrow N=3^n.10-2^{n-1}.10\)

\(\Rightarrow N=\left(3^n-2^{n-1}\right).10⋮10\)

\(\Rightarrow N⋮10\left(đpcm\right)\)

Vậy \(N⋮10\)

Y
9 tháng 2 2019

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\forall n\)

9 tháng 2 2019

3n+2-2n+2+3n-2n

=(3n+2+3n)+(-2n+2-2n)

=3n.(32+1)-2n.(22+1)

=3n.10-2n.5

=3n.10-2n-1.10

=10.(3n-2n-1) chia hết cho 10

Vậy 3n+2-2n+2+3n-2n chia hết cho 10

9 tháng 2 2018

Ta có \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10 

9 tháng 2 2018

Ta có 3n+2-2n+2+3n-2n

= 3n.9-2n.4+3n-2n

= 3n(9+1)-2n(4+1)

= 3n.10-2n.5=3n.10-2n-1.10

Nhận thấy 3n.10 chia hết cho 10 với mọi số nguyên dương n; 2n-1.10 chia hết cho 10 với mọi số nguyên dương n

=> 3n+2-2n+2+3n-2chia hết cho 10 với mọi số nguyên dương n

5 tháng 7 2018

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)

\(=3^n.3^2+3^n-\left(2^n.2^2+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.2.5\)

\(=3^n.10-2^{n-1}.10\)

\(=\left(3^n-2^{n-1}\right).10\) chia hết cho 10

Bảo nè,phải sửa lại đề n\(\in\)N* vì n=0 thì \(2^{0-1}=2^{-1}=\frac{1}{2}\) nên \(\left(3^n-2^{n-1}\right).10\) không chia hết cho 10

5 tháng 7 2018

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.9-2^{n-1}.8+3^n-2^{n-1}.2\)

\(=3^n\left(9+1\right)-2^{n-1}\left(8+2\right)\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)\)\(⋮\)\(10\)