Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
A B C E D M N P
Qua N kẻ đường thẳng NP // AB (P thuộc BC)
Khi đó ta thấy ngay \(\Delta EBN=\Delta PNB\left(g-c-g\right)\Rightarrow EB=PN;EN=PB\) (1)
Do NP // AB nên \(\widehat{NPC}=\widehat{EPB}\); do DM // BC nên \(\widehat{ADM}=\widehat{EPB}\)
Suy ra \(\widehat{ADM}=\widehat{NPC}\)
Ta cũng có \(\widehat{DAM}=\widehat{PNC}\) (Hai góc đồng vị)
\(\Rightarrow\Delta DAM=\Delta PNC\left(g-c-g\right)\)
\(\Rightarrow AM=PC\) (2)
Từ (1) và (2) suy ra DM + EN = PC + BP = BC.
a. Xét tam giác AOM và tam giác BOM có
OA=OB(gt)
AOM=BOM(gt)
OM chung
=> tam giác AOM= tam giác BOM (cgc)
b. Theo câu a, tam giác AOM= tam giác BOM (cgc)
=> OAM=OBM hay OAC=OBD
Xét tam giác OAC và tam giác OBD có
OAC=OBD( c/m trên)
OA=OB(gt)
AOB chung
=> tam giác OAC= tam giác OBD (gcg)
=> AC=BD
c. Gọi giao điểm giữa Ot và AB là I
Xét tam giác IAO và tam giác IBO có
OA=OB(gt)
OAI=OBI(gt)
OI chung
=> tam giác IAO= tam giác IBO(cgc)
=> AIO=BIO
Mà AIO+BIO=180*( kề bù)
=> AIO=BIO= 90*
=> OI vg AB hay Ot vg AB
Ta lại có d vg AB=> d//Ot
a) Xét tam giác ABE và HBE có :
Cạnh BE chung
AB = BH
\(\widehat{ABE}=\widehat{HBE}\)
\(\Rightarrow\Delta ABE=\Delta HBE\left(c-g-c\right)\)
\(\Rightarrow\widehat{BHE}=\widehat{BAE}=90^o\Rightarrow EH\perp BC\)
b) Gọi giao điểm của AH và BE = I.
Dễ dàng chứng minh được \(\Delta AIB=\Delta HIB\left(c-g-c\right)\)
\(\Rightarrow AI=IH;\widehat{AIB}=\widehat{HIB}=90^o\)
Vậy BE là trung trực AH.
Sau này ta có thể dùng:
Vì BA = BH; EA = EH (\(\Delta ABE=\Delta HBE\) ) nên BE là trung trực AH.
c) Xét hai tam giác vuông BHK và BAC có
Góc B chung
BH = BA
\(\Rightarrow\Delta BHK=\Delta BAC\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow KH=AC\)
Lại có \(AE=HE\Rightarrow EC=EK\)
d) Xét tam giác AKC có CA và KH là các đường cao nên E là trực tâm, suy ra BE là đường cao.
Vậy thì \(BE\perp KC\)
Lại có \(BE\perp AH\Rightarrow\)AH//KC
Bài này
em tham khảo ở
https://olm.vn/hoi-dap/detail/2060746765.html
hoc tot