Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
a. tam giác ABC cân tại A --> góc ABC= góc ACB
mà góc ABC = góc EBF (đối đỉnh)
---> góc ACB = góc EBF
Xét tam giác EBF và tam giác DCK
góc FEB= góc KDC= 90o
EB=DC (gt)
góc EBF =góc DCK
---->tam giác EBF = tam giác DCK(g.c.g)
b. có EF//DK ( do cùng vuông góc BC)
----> góc EFK = góc DKF ( so le trong)
Xét tam giác IEF và tam giác IDK
góc IEF= góc IDK=90o
EF=DK ( câu a)
góc EFI = góc DKI
---> tam giác IEF = tam giác IDK( g.c.g)
----> IF=IK
Bài này
em tham khảo ở
https://olm.vn/hoi-dap/detail/2060746765.html
hoc tot
A B C E N I D M O 1 2 2 1 2 3 1 3 1
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
C B M F N A I E O K T
b, kẻ AO // BC
góc OAK so le trong KFB
=> góc OAK = góc KFB (tc)
xét tam giác AOK và tam giác BMK có : AK = KM (do ...)
góc AKO = góc MBK (đối đỉnh)
=> tam giác AOK = tam giác BMK (g-c-g)=
=> AO = MB (đn)
có AO // BC mà góc EOA đồng vị EMC
=> góc EOA = góc EMC (tc) (1)
gọi EF cắt tia phân giác của góc BCA tại T
EF _|_ CT (gt)
=> tam giác ETC vuông tại T và tam giác CTF vuông tại T
=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM
có có TCM = góc ECT do CT là phân giác của góc ACB (gt)
=> góc CET = góc TMC và (1)
=> góc AEO = góc AOE
=> tam giác AEO cân tại A (tc)
=> AE = AO mà AO = BM
=> AE = BM
a, MB = MN (gt)
M nằm giữa N và B
=> M là trung điểm của NP (đn)
NI // AB (gt); xét tam giác ANB
=> I là trung điểm của AN (đl)
b,
bạn tự vẽ hình nhé:
a) Từ E kẻ đường thẳng vuông góc với BC cắt BC tại M
Ta có: góc EBM + 900 + ABH = 1800
=> EBM + ABM = 900 ( 1 )
Mặt khác: trong tam giác BAH vuông tai H, có: BAH + ABH = 900 ( 2 )
Từ ( 1 ) và ( 2 ) ta có: EBM = BAH => 1800 - EBM = 1800 - BAH => EBC = BAI
Xét tam giác EBC và tam giác BAI, có :
EB = AB
EBC = BAI
BC = AI
Suy ra: tam giác EBC = BAI ( c.g.c )
=> PIQ = QCH ( 2 góc tương ứng )
b) Do tam giác EBC = tam giác BAI nên BI = EC ( 2 cạnh tương ứng )
Xét tam giác IPQ có: PIQ + IQP + IPQ = 1800 (3)
Xét tam giác QHC có: HQC + QCH + CHQ = 1800 (4)
=> PIQ + IQP + IPQ = HQC + QCH + CHQ
Mà PIQ = QCH
IQP = HQC ( 2 góc đối đỉnh )
=> IPQ = CHQ = 900
Vậy IB vuông góc với EC cắt nhau tại P
c) Nối I với C, điểm giao nhau của IC và BF là T
Tương tự: câu a và câu b thì IC cũng vuông góc với BF
Trong tam giác IBC có: 3 đường cao là: IH, CP, BT => 3 cạnh này cắt nhau tại 1 điểm
=> Ba đường thẳng AH, CE, BF đồng quy