K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

a) Xét tam giác ABE và HBE có :

Cạnh BE chung

AB = BH

\(\widehat{ABE}=\widehat{HBE}\)

\(\Rightarrow\Delta ABE=\Delta HBE\left(c-g-c\right)\)

\(\Rightarrow\widehat{BHE}=\widehat{BAE}=90^o\Rightarrow EH\perp BC\)

b) Gọi giao điểm của AH và BE = I.

Dễ dàng chứng minh được \(\Delta AIB=\Delta HIB\left(c-g-c\right)\)

\(\Rightarrow AI=IH;\widehat{AIB}=\widehat{HIB}=90^o\)

Vậy BE là trung trực AH.

Sau này ta có thể dùng:

Vì BA = BH; EA = EH (\(\Delta ABE=\Delta HBE\) ) nên BE là trung trực AH.

c) Xét hai tam giác vuông BHK và BAC có

Góc B chung

BH = BA

\(\Rightarrow\Delta BHK=\Delta BAC\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow KH=AC\)

Lại có \(AE=HE\Rightarrow EC=EK\)

d) Xét tam giác AKC có CA và KH là các đường cao nên E là trực tâm, suy ra BE là đường cao.

Vậy thì \(BE\perp KC\)

Lại có \(BE\perp AH\Rightarrow\)AH//KC

7 tháng 2 2018

Câu 1 :

A B C H K

a) Xét \(\Delta AHC,\Delta KHC\) có:

\(\widehat{CAH}=\widehat{CKH}\left(=90^{^O}\right)\)

\(CH:Chung\)

\(\widehat{ACH}=\widehat{KCH}\) (CH là tia phân giac của \(\widehat{C}\))

=> \(\Delta AHC=\Delta KHC\) (cạnh huyền - góc nhọn) (*)

b) Từ (*) suy ra :

\(AC=CK\) (2 cạnh tương ứng)

Xét \(\Delta AKC\) có :

\(AC=CK\left(cmt\right)\)

=> \(\Delta AKC\) cân tại A (đpcm)

7 tháng 2 2018

D E F 10 24 26

Xét \(\Delta DEF\) có :

\(DF^2=EF^2-DE^2\) (Định lí PITAGO đảo)

=> \(DF^2=26^2-10^2\)

=> \(DF^2=576^{ }\)

=> \(DF=\sqrt{576}=24\)

Mà theo bài ra : \(DF=24\left(cm\right)\)

Do đó , \(\Delta DEF\) là tam giác vuông

14 tháng 7 2015

a. tam giác ABC cân tại A --> góc ABC= góc ACB

mà góc ABC = góc EBF (đối đỉnh)

---> góc ACB = góc EBF 

Xét tam giác EBF và tam giác DCK

     góc FEB= góc KDC= 90o

    EB=DC (gt)

    góc EBF =góc DCK

---->tam giác EBF = tam giác DCK(g.c.g)

b. có EF//DK ( do cùng vuông góc BC)

----> góc EFK = góc DKF ( so le trong)

Xét tam giác IEF và tam giác IDK

    góc IEF= góc IDK=90o

    EF=DK ( câu a)

    góc EFI = góc DKI

---> tam giác IEF = tam giác IDK( g.c.g)

----> IF=IK

1. Cho tam giác cân ABC, AB=AC. Trên cạnh BC lấy D. Trên tia đối của BC lấy E sao cho BD=BE. các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CM: a, DM=ED b, Đường thằng BC cắt Mn tại I là trung điểm của MN 2. Cho tam giác ABC có góc B và góc c nhỏ hơn 90 độ. Vẽ ra phía ngoài tam giác ấy các tam giác vuông cân ABD và ACE (trong đó góc ABD và...
Đọc tiếp

1. Cho tam giác cân ABC, AB=AC. Trên cạnh BC lấy D. Trên tia đối của BC lấy E sao cho BD=BE. các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CM:

a, DM=ED

b, Đường thằng BC cắt Mn tại I là trung điểm của MN

2. Cho tam giác ABC có góc B và góc c nhỏ hơn 90 độ. Vẽ ra phía ngoài tam giác ấy các tam giác vuông cân ABD và ACE (trong đó góc ABD và góc ACE đều bằng 90 độ), vẽ DI và EK cùng vuông góc với đường thẳng BC. CM:

a, BI=CK; EK=HC

b, BC=DI+EK

3. Cho M, N lần lượt là trung điểm của các cạnh AB và AC của tam giác ABC. Các đường phân giác và phân giác ngoài của tam giác kẻ từ B cắt đường thẳng MN lần lượt tại D và E các tia AD và AE cắt đường thẳng BCtheo thứ tự tại P và Q. CM:

a, BD\(\perp\)AP và BE\(\perp\) AQ

b, B là trung điểm của BQ

c, AB=DE

0
   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC

20 tháng 6 2016

Hỏi đáp Toán
vội quá nên ẩu , toán hìh lần sau đăng sớm để giải chớ đăng hơi sát giờ tớ giải nhưng gửi ko kịp

20 tháng 6 2016

thế này mà ẩu đẹp hơn chữ tui gấp 100 lần -_-